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Abstract-The adequate representation of the thermal behaviour of the regenerative heat exchanger has 
attracted the attention of mathematicians for many years. Nearly all efforts have been directed towards the 
two-dimensional problem that is it has been required to calculate the temperatures within the regenerator 
as function of distance, in the direction of gas flow, and of time: The effect of thermal conductivity within 
heat storing material of the regenerator in a direction perpendicular to the direction of gas flow has either 
been ignored or incorporated within a lumped or overall heat-transfer coefficient. In this paper, the three- 
dimensional equations are considered and the effect is discussed of the simplifying assumption that the 
problem can be regarded to be in two dimensions only. The problem of longitudinal thermal conductivity 

is not considered since it has been shown that its effect in most practical cases is negligible. 

NOMENCLATURE 

regenerator heating surface area [ft2, 
cm21 ; 
maximum exit gas temperature, cool- 
ing period calculated by 2-D method 

[“F, “Cl ; 
minimum exit gas temperature, cool- 
ing period, calculated by 2-D method 

[“F, “Cl ; 
maximum exit gas temperature, cool- 
ing period, calculated by 3-D method 

W, “Cl ; 
minimum exit gas temperature, cool- 
ing period, calculated by 3-D method 
[“F, “Cl ; 
specific heat of heat storing matrix 

[Btujlb “F, Cal/g “C] ; 
semi-thickness of wall of heat storing 
matrix [ft, cm]; 
surface heat-transfer coefficient [ Btu/ 
ft2 h “F, Cal/cm2 s “C] ; 
overall heat-transfer coeffkient [Btu/ 
ft2 h “F, Cal/cm s “C] ; 
Hausen ratio defining extent of the 

L 
M, 
m, 

N, 
p, 
P9 

S, 

T, 

T In, 

4 
thi, 

tci, 

thm, 

non-linear temperature changes in the 
regenerator ; 
length of regenerator [ft, cm] ; 
mass of heat storing matrix [lb, g] ; 
mass of residual gas in the regenerator 

[lb, iit1 ; 
Biot modulus, hd/3, ; 
length of period of operation [h, s]; 
stability parameter, aA8/Ax2 = Awl 
Az2 in the numerical solution of the 
differential equations ; 
specific heat of gas [Btu/lb “F, Cal/g 

"Cl; 
temperature of heat storing matrix 
[“F, “Cl ; 
mean (in x direction) temperature of 
heat storing matrix [“F, “C] ; 
gas temperature [“F, “C] ; 
entrance gas temperature in the heat- 
ing period [“F, “C] ; 
entrance gas temperature in the cool- 
ing period [“F, “C] ; 
time mean exit gas temperature in the 
heating period [“F, “C] ; 

997 



A. J. WILLMOTT 998 

tcm, 

W 

W, 

% 

Y, 

Z, 

time mean exit gas temperature in the 
cooling period [“F, “C] ; 
flow rate of gas [lb/h, g/s] ; 
dimensionless time ; 
distance from surface of heat storing 
mass in a direction perpendicular to 
gas flow [ft, cm] ; 
distance from regenerator entrance in 
a direction parallel to gas flow [ft, cm] ; 
dimensionless distance from surface 
of heat storing matrix in a direction 
perpendicular to gas flow. 

Greek symbols 
thermal diffusivity of heat storing 
matrix [ft2/h, cm2/s] ; 
dimensionless time (two dimensional 
problem); 
thermal ratio ; 
time [h, s] ; 
thermal conductivity of heat storing 
matrix [Btu/ft h “F, Cal/cm s “C] ; 
reduced length (three dimensional 
problem) ; 
reduced length (two dimensional 
problem) ; 
dimensionless length in direction of 
gas flow (two dimensional problem) ; 
dimensionless length in direction of 
gas glow (three dimensional problem) ; 
reduced period (two dimensional 
problem) ; 
density of heat storing matrix [lb/ft3, 

s/cm31 ; 
dimensionless ratio (A, - B2)/ 
643 - B,); 

correction applied to account for the 
inversion of the parabolic solid tem- 
perature profile at the regenerator 
reversals ; 
reduced time (three dimensional 
problem) ; 

Subscripts 

J? refers to position in y direction ; 
refers to position in x direction : 

s, refers to position in time e ; 

; 
refers to semi-thickness of matrix wall ; 
refers to surface of matrix wall. 

Superscripts 
I 
, refers to heating period ; 
If 
> refers to cooling period. 

INTRODUCTION 

THE regenerator consists of a heat storing 
matrix, often called “chequerwork”. Hot gas 
passes through the channels of the chequerwork 
and gives up part of its heat to the matrixmaterial. 
The hot gas is then switched off and cold gas is 
passed through the same channels and the heat 
is regenerated from the chequerwork to this gas. 
In due course, another reversal occurs when the 
cold gas is shut off and hot gas is passed through 
the chequerwork channels again. 

There are thus three processes of heat transfer 
which take place in a thermal regenerator. 

(i) Heat is transferred within the chequerwork 
material. This is represented by the diffusion 
equation : 

aT Ca2T a2TI 
-=a@+az”]. ae (1) 

(Here Z is used a direction perpendicular to 
x and y.) 

The thermal conductivity in matrix solid in a 
direction parallel to that of the gas flow can be 
shown to be negligible (see Appendix) particu- 
larly in the case of chequerwork made of ceramic 
material, and this is used in most regenerators for 
industrial application. 

(ii) Heat is transferred across the surface of the 
chequerwork ; 

(iii) Heat is gained/lost by the gas passing 
through the regenerator and the gas currently 
resident in the channels of the chequerwork. 
The equation is : 

hA(T, - t) = WSL,c + msg. 
ay 

(2) 

Equations (1) and (2) express the solid tempera- 
ture, T, as function of (x, y, z, ej. One simplifying 
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assumption is included, therefore, to reduce semi-homogenous slab, in which in the direction 
the dimensions of the problem. A cross section parallel to gas flow,the conductivity is zero and 
of part of the ~generator can be represented by in the ~~endicular direction is finite. 
Fig. 1. The chequerwork is considered to be a Hausen [l] developed methods for dealing 
plain wail of specified semi-thickness d, and it is with slabs, circular cylinders and spheres, while 

at _M -_- 
ay nfsf 

_g J& 
i > 
r,-, 

RG. 1. Illustration of chequerwork cross section and the 
descriptive differential equations. 

assumed that for any complex chequer shape, 
the thickness of the “equivalent” plain wall can 
be calculated. A general picture of a regenerator 
is to be found in Fig. 2. The problem is thus 
reduced to the consideration of the solid as a 

FIG. 2. Schematic drawing of aCowper stove showing levels 
in cheqnerwork for which gas and solid temperatures are 

calculated. 

more recently Razelos and Lazaridis [2] have 
dealt with the case of the hollow cylinder, 
3utte~eld et al. [3] have treated the cases of 
the hollow cylinder, slab and hollow square 
section. In these three papers, only a single 
level in the middle of the regenerator is effec- 
tively considered whereas here, simulation of 
the whole regenerator is attempted. 

The differential equation (1) becomes : 

ar a2T 
-gg=ap (3) 

At the surface of the chequerwork, x = 0 
and x = 2d. At the wall ~~-t~~kness, x = d. 
The boundary conditions are specified as: 

aT - 
ax x=d = I 

0 

dT 

ax,=, R I 
= k(T, - t) 

x=2d 

At the entrance to the regenerator, y = 0, and. 

(4) 

(5) 
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the gas temperature is considered as not to 
vary with time. 

A regenerator is sometimes called a contra- 
flow regenerative heat exchanger. The adjective 
“contra-flow” is applied because the hot gas 
passes through the regenerator channels in the 
opposite direction to that of the cold gas. Since 
the direction y is always measured from the 
gas entrance of the heat storing mass, the contra- 
ff ow operation is incorporated by the equation : 

T'b, L - Y,O) = Tb,Y, P) 

where T’(x, L - y, 0) is the chequerwork tem- 
perature at the ~g~~ing ofa period i~ediately 
after a reversal and T(x, y, P) is the correspond- 
ing temperatu~ immedia~ly before the reversal. 

After a large number of successive cycles of 
identical operation, the regenerator achieves a 
dynamic equilibrium such that the gas and solid 
temperature distribution throughout the re- 
generator is identical at the same point in time 
in successive cycles. it is for this dynamic or 
cyclic equilibrium that the solution to the dif- 
ferential equations is often required. 

DIMENSIONLESS PARAMETEcRS 

The follo~ng rep~a~rnen~ are possible in 
equations (2) and (3). 

the equations then become : 

al” a2T 
$&=&T (6) 

at 
-=T-t 
a< 0 * 

For each period of the cycle, that is the heating 
period and the cooling period, it is possible to 
define the descriptive dimensionless parameters, 
“reduced time” a and “reduced length” A. 

kz =;(P-mlw) 

hA 
A =- 

WS 

dt and A correspond to the values of w and 5 
when@=Pandy=L. 

The boundary conditions represented pre- 
viously by equations (4) and (5) now become : 

aT 
-z zml I = 

0 

aT 
xi” .&=o 

= N(T, - t) 

z=2 

(9) 

where N = M/& the Biot modulus. 
The regenerator and its operation can thus 

be described by six dimensionless parameters 
and the gas inlet temperatures for the two periods 
of operation. These are:set out in Table l(a). 

T&e l(a) 

Heating Cooling 
period period 

62 0” Reduced time 
A x Reduced length 
N N” Biot modulus 
thi tci Entrance gas 

temperature 

The single prime is used to refer to the heating 
period and the double prime to the cooling 
period. 

~ethuds of solution of the di~~e~i~l e~~utiu~ 
There are two basically different approaches 

to the solution of the equations. The first method 
is of the closed type where the equations are 
solved directly for cyclic equilibrium. The 
unpublished method of Collins and Daws [4] 
is an example of the closed methods, ~though 
Hausen, Ihffe [7] and Nahavandi and Weinstein 
[5] proposed similar approaches to the two- 

dimensional regenerator equations. The other 
procedure, including the ones described here, are 
of the simulation type where the mathematical 
model is cycled to ~~ib~~ Several methods 
of this type have been described for the equations 
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in two dimensions, including that of Hausen [6] 
and Willmot [S] . An analogue computer solution 
to the unsimplified equations used here is 
described by Ridgion, et al. [9]. The calculating 
of numerical solutions to the differential equa- 
tions in the three dimensions X, y, and 8, by 
numerical step by step procedures was made 
possible by the advent of computers as fast as 
the University of Manchester ATLAS computer. 
Without a machine of this speed, the solution 
of the equations for just one set of operating 
parameters would have been impracticable. 

By solving the differential equations (6) and 
(7) in finite difference form, the thermal re- 
generator is simulated and can be cycled to 
dynamic equilibrium. The numerical solution 
of equation (6) involves the problem of stability 
unless special precautions are taken. 

We first define p to be Aw/(Az)’ where Aw is the 
time step length and AZ is the distance step 
length into the chequerwall. If the explicit 
difference form of equation (6) is employed, 
that is 

T s+1 =T,+Aw$ 
s 

or T,s+, = T,, + P(T+l,, 
- 2TJ + Cl,,) (10) 

then unlessp ,< 3, theproblembecomes unstable. 
In 1947, Crank and Nicolson [lo] proposed 

an application of the trapezoidal formula for the 
integration of the diffusion equation, namely : 

or T,,+, = T,#S +; vr+1,,+1 - Z,s+l 

+ T,- l,s+l + T+l,, - 2T.s + T-1,J (11) 

This yields an implicit scheme in which in order 
to calculate the values of T,,,,, for r = 0 
(surface), 1, 2, . . . . m (brick semi-thickness), 
it is necessary to solve the resulting algebraic 

equations, which are essentially of the form 

ET,+1 = FT, 

where E and F are tridiagonal matrices. 
In order to find T,, 1 = E- ‘FT, involves more 

labour than the calculation of T,,, by the 
explicit method. This is more than compensated 
for by the fact that p can take all values without 
loss of stability, although as p increases, there 
is an increase in truncation error. 

Mitchell and Pearce [ 111 pointed out that 
the Crank-Nicolson method is not the optimum 
implicit scheme since it does not have the mini- 
mum truncation error possible. They specified 
that the optimum difference representation of 
equation (6) is : 

(5 + 6~) T,,,+1 + (+ - 3p)(T,+,, s+l 

+ T,_ l,s+J = (5 - 6~) T,,, + (4 + 3~) 

x (T,+I,, + Tr-1,s). (12) 

In order to compute T,,, from T, using the 
Mitchell and Pearce scheme involves no more 
effort than is required for the Crank-Nicolson 
method, and is equally stable for.all values of p. 

This method of solving equation (6) has been 
incorporated into this simulation of the regener- 
ative heat exchanger. It has been modified to 
take note of the difference representation of the 
boundary conditions (8) and (9) and equation 

(7). 
At the brick semi-thickness, I = m and T,, 1 

= T,_, since aT/az,,, = 0. At this point, the 
difference equation becomes 

(5 + 6P) T,,,+1 + (1 - 6P) T,-,,,+, 

= (5 - 6~) T,,, + (1 + 6~) L-1,s. (13) 

Equation (9), at the solid surface, is presented 
in the form 

T- 1 = Tl + 2Az N(t - To). 

Substituting for T_ 1 in equation (12) yields : 

(5 + 6~ + (3~ - 3) (2NAz)J TX,+ 1 

+ (1 - 6P)T,,,+, + (+ - 3~) (2NAz) t, + 1 

= (5 - 6p - (+ + 3p) (2NAz)) To,, 

+ (1 + 6p) T,,, + (+ + 3p) (2NAz) t,. (14) 
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Using the notation : 

A, = 5 + 6p + (3~ - 3)(2NAz) 

B, = (+ - 3p) (2NA.z) 

A, = 5 - 6p - (3 + 3p)(2NAz) 

B, = (4 + 3p)(2NAz). 

This equation becomes : 

AIT,,,+, + (1 - @VI,.+, + &&+I 

= 4,To,s + (1 + 6~) T,, +- 4,~s. (15) 

Equation (7) can be represented, using the 
trapezoidal formula in the following form : 

1-P 
rj+t =mtj + (16) 

at any time s = 0, 1,2, . . . , where p = AQ2. 
The finite difference representations of equa- 

tion (6) set out above are applicable at all levels 
down the height of the regenerator atj = 0 (top 
of the chequerwork), 1, 2, . . , n (base of the 
chequers). However, at the entrance (j = 0), the 
gas temperature does not vary with time, that is 
t, = constant. Hence at j = 0, equation (15) 
becomes : 

A,%,,+, + (1 - 6~) T,,+I 

= F&,T~,~ + (1 + 6~) T,,, + 6p(2NAz) t,. (17) 

At the other levels of the regenerator, j = 1, 
2 ,‘.‘f a, the gas temperature at time s + 1 
is obtained using the imphcit form: 

t s+l,j+l ’ T -___ 
l+B 

O,s+l,j+l 

1-P 
= l+Bfs+l.j + ’ T 

1 + P o,s+1z2 
uf4 

These sets of equations are gathered together 
into matrix form 

UtT,+$lj=O = v[L t.Jj=O (19) 

GET,+l,j~rs+l,jl 

= fffT,, j3 ts, j9 G ,s+l,j-17tsSl,j-l I (20) 

where U, K G and II are tridiagonal matrices. 

The integration process consists of computing 
T sfl = U-‘V[T,, t,] at levelj = 0 and then 

ET,+,, ts+J 

= G-‘EJ[T,,j,ts,j, TO,s+l,j-lrts+l.j-11 

at levels j = 1, 2, 3, . . . successively to n. This is 
repeated for s = 1, 2, . . . until the end of the 
current period of operation. The solid tempera- 
tures at the beginning of the period are specified 
arbitrarily at the commencement of the inte- 
gration processes and thereafter by the solid 
temperatures computed at the end of the previous 
period. 

At the end of a heating period, the direction 
of gas flow is reversed and in the cooling period, 
the gas enters the regenerator at j = II (at the 
base). The method of integration is exactly the 
same although the matrices U, V, G and H 
usually will be different and the integration 
process will proceed from j = n, n - I, n - 2 
to 2, 1, 0. 

The tridiagonal elements of the matrices U, 
V, G and H are calculated and stored, and an 
arbitrary temperature distribution in the heat 
storing matrix is chosen. The gas temperatures 
at the beginning of the heating period are then 
calculated using equation (5) and the specified 
inlet gas temperature. Since U and G are tri- 
diagonal matrices the process of Gaussian 
elimination is simplified. Advantage is taken 
of the fact that the row muItipliers need only 
be calculated once and these are therefore stored 
at the beginning of the computation. The 
computer representation of the thermal re- 
generator, the physical characteristics and opera- 
ting conditions of which are specified as input 
data to the program, is cycled to equilibrium or 
through a preset number of cycles. 

Equilibrium is considered to be achieved if 
successive final exit gas temperatures, heating 
period, from cycle to cycle, differ by less than 
1 in the fifth significant figure. 

The explicit method 
The explicit finite difference replacement of 
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the diffusion equation is used, namely : 

T r,s+1 = T,,, + P(T,+,,s - q, + T,-I,,). (10) 

At the solid surface, when s = 0, the boundary 
condition represented as : 

T- 1 = Tl + 2AzN(t - TO) 

is substituted into equation (10) to yield : 

T o,s+l = T,,, + 2~K.s - T,,, 

+ AzN (t - G, ,)I (21) 

At the semi-thickness of the chequer wall, 
I = mand T,+l = T,_ 1. Equation (10) becomes 

T m,s+l = T,,, + ~PK,,, - T,-I,,). (22) 

Again, the difference equation (16) is used to 
represent equation (7). 

At the beginning of a heating period of opera- 
tion, the gas temperatures are calculated using 
equation (16) at j = 1, 2, . . . , n. The inlet gas 
temperature is pre-specified as a boundary 
condition at j = 0. 

Next, at levels j = 0, 1, 2, . . . , n the solid 
temperatures at positions I = 0, 1, 2, . . . , m 

into the chequerwork for time Aw, i.e. for s = 1, 
employing equations (lo), (21) and (22). This 
process is again repeated for s = 2, 3, . . . until 
the end of the period. 

The whole procedure is repeated for the cool- 
ing period except that the reversal (counterflow) 
condition is incorporated. The gas temperatures 
are computed at j = m - 1, m - 2, . . . , 2, 1, 0 
using a suitably modified version of equation 
(16). The inlet gas temperature is specified as a 
boundary condition at j = m. The integration 
of equation (6) then proceeds at j = m, m - 1, 
m - 2, . . . , 2, 1, 0. 

This “heating-cooling” cycle is repeated until 
cyclic equilibrium is reached or for a specified 
number of cycles. 

Although this method, originally discussed by 
Nusselt [ 173 as long ago as 1927, is prohibitively 
slow due to the large number of steps required if 
stability of the integration process is to be main- 
tained, it is useful for exploratory studies 

especially if equation (5) involves a non-linear 
term to account for radiative effects. 

Reduction of the number of dimensions 
At any height y in the regenerator, the solid 

temperature is a function of the distance x into 
the chequerwall and of time 8. The surface of the 
wall is represented by x = 0 and the semi- 
thickness by x = d. At any such height y, the 
mean solid temperature T, (y, 0) is defined by 

d 

T,(Y, 0) = ; 
s 

T(x, Y, 0) dx (23) 

0 

and an overall heat-transfer coefficient h can 
then be defined by the equation 

h(T, - t) = h(T, - t) (24) 

where To is the surface solid temperature. 
By integrating equation (3), with respect to 

x Hausen has demonstrated that 

(25) 

Adp = M, the mass of the chequerwork, and 
thus equation (25) becomes 

aT I;A 
x$’ = &t - T,) 

Equation (2) is modified to become: 

I~A(T - t) = wSL$ + mS c m ay ae’ (27) 

If the replacements p and q are made in equations 
(26) and (27) where 

DAY 
p = WSL’ 

they become 

z = (t - T,) 

; = (T, - t). 

(28) 

(29) 
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Corresponding to each period of the cycle, 
Hausen proposed the dimensionless parameters, 
“reduced length”, z and “reduced period”, 
ii. 

;I = hA/WSL, 

Thus, using this two dimensional representa- 
tion of the regenerator, there are four dimension- 
less parameters and the inlet gas temperatures 
to describe the system, set out in Table l(b). 

Table l(b) 

Heating Cooling 
period period 

-, 
A 
-, n 
thi 

;I” 

jy 

Cci 

Reduced length 
Reduced period 
Entrance gas 

temperature 

Various methods have been proposed for the 
solution of equations (28) and (29), in particular 
those of Hausen [6], Iliffe [7], Nahavandi and 
Weinstein [5] and Willmott [8]. However, the 
adequacy of equations (28) and (29) to represent 
to the thermal behaviour of a regenerator 
depends on the use of the lumped (sometimes 
called “overall”) heat-transfer coeffkient k In 
his paper of 1942, Hausen [12] suggested that 
provided the mean solid temperature T, varies 
linearly with time, the coefficient ti can be 
represented by 

/i = (l/h + d4/31)_’ 

where 4 is the correction factor to account for 
the inversion of parabolic temperature profile 
within the chequerwall at the beginning of each 
period of regenerator operation. 

Hausen proposed : 

+&E_ ‘+L 
i I 15cr P’ P” 

(30) 

$ = J[O*3 + 2d22(l& + l/P’)] (31) 

if (d%)(l/P’ + l/P’) > 5 

or employing the dimensionless parameters, 

if d + & 6 5 (32) 

4= 
2.142 

J[O.3 + 2(1/U + l/sz”)] 

if;+&>5 (33) 

Relation between the dimensionless parameters 
Reduced length Z 

z = (1 + N4/3)-‘. 

Reduced period ii 

1 

z hAP 
2!52$+?Y)=~(~+~). 

Hence : 
ii = Q(l/N + &3)-l 

At a position remote from the current re- 
generator entrance, the mean solid temperature 
varies linearly with time, but because the gas 
entrance temperature is constant, the closer to 
the entrance the more non-linear the time varia- 
tion of the solid temperature. The non-varying 
entrance gas temperature can be said to propa- 
gate the non-linear behaviour down the 
regenerator. An estimate of the extent of these 
non-linearities was suggested by Hausen [ 121 in 
form of a factor K/K,,, where 0 < K/K, < 1. 
The bigger K/K,, the smaller the effect of the 
non-linear behaviour of the solid temperature. 
When W’S’P = W”S”P”, then 

K Y~REG -= 

& ( > 
L+L 

1 - VREG n’ ,” . 
(34) 
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qREG is the thermal ratio defined for the heating 
period as 

tf&. = (thi - chm)/(thi-- tci) 

and for the cooling period as 

r&c = @cm - tci)/(thi - tci). 

It is to be noted that thm and tcm are the 
chronological mean gas exit temperatures for 
the heating and cooling period respectively. 
When W’S’P’ = w”S”P”, then it is easily 
verified that at thermal equilibrium r&c = 

GE@ 
This definition of K/K, is not completely 

adequate since it involves ;I, which depends 
upon 4. It will be recalled that #J is computed 
upon the assumption that T, varies linearly 
with time whereas K/K, seeks to represent the 
non-linear behaviour of T, near to the re- 
generator entrance. However, low values of 
K/K, for a specified value of 7i are associated 
with long cycle times, whereas low values of 4 
are associated with short cycle times. In general, 
therefore, the severe effects of the inversion of 
the parabolic temperature profile within the 
chequerwall at the reversals of regenerator 
operation are not usually felt at the same time 
as the severe effects of the propagation from the 
regenerator entrance in either period, of non- 
linear behaviour of mean solid temperature, T,. 

It might be noted here, however, that the 
author has found Hausen’s K/K, factor useful 
for purposes other than it was intended. 
Hausen [13] obtained an overall recuperator- 
like heat exchange coefficient K,, directly re- 
lating the entrance and time mean exit 
temperatures of the gases in the two periods of 
operation. The accuracy of the coefficient K, 
depended upon the linear variation of solid 
temperature with time and in 1942, Hausen [ 121 
introduced the correction factor K/K,, to 
account for the propagation of non-linear 
behaviour by the constant entrance gas 
temperatures. 

Subsequently, Willmott [8] employed the 
factor K/K,, as a measure of the truncation 

errors in the finite difference representation of 
equations (28) and (29). In this paper, K/K, is 
used as a parameter specifying the extent of 
non-linear behaviour of solid temperature down 
the regenerator from the gas entrance. 

There is another source of non-linear 
behaviour of the gas and mean solid tempera- 
tures which accentuates the effect of the con- 
stant entrance gas temperatures, namely the 
nonequality of W’S’P and W”S”P”, or in 
terms of the dimensionless parameters, of 
n’/Z and F’Jz’. In this paper, consideration 
is restricted to the case when W’S’P’ = W”S”P” 
and, hence, when r&c = &- 

Computer solution of the equations 
Willmott’s method of 1964 has also been 

programmed and a comparison made between 
the exit gas temperatures computed by the 
implicit method for equations (6) and (7) 
described in this paper and by the 1964 method 
for the equations (28) and (29). 

Clearly, the solution to equations (28) and 
(29) for dynamic equilibrium should be very 
close to the corresponding solution to the 
equations (6) and (7) in three dimensions, w, z, 
and 5. Further, the time taken to solve equa- 
tions (28) and (29) is considerably less than that 
to solve the three dimensional problem. The 
method of computation in the comparison 
undertaken, has been to solve the equations (28) 
and (29) for cyclic equilibrium and to employ 
the calculated solid temperature profile T,(p) 
at the end of the cycle at dynamic equilibrium 
as an initial estimate of the solid temperature 
distribution for the three dimensional problem. 

Assuming aVdf7 = constant in equation (3) 

T(x) = To + 05Kx(x - 2d) (35) 

where T(x) is the value of Tat x and T, is the 
surface temperature at x = 0 and x = 26. 
K takes the form: 

K=&~=;(t- T,) (36) 



from equation (25); in equation (35), T, can be 
computed from equation (24). 

To = t + t;(T, - t)/h. (37) 

At any height of the regenerator, an initial 
estimation of the temperature profile can there- 
fore be made. T, is computed by solving equa- 
tions (28) and (29) for cyclic equilibrium. K and 
T, are then calculated using equations (36) and 
(24). The temperature profile within the re- 
generator chequerwork is calculated using 
equation (35). 

The three dimensional equations are then 
solved for cyclic equilibrium employing this 
calculated profile as the initial conditions to the 
problem. 

In practice, this has been found to be well 
worth while, the number of cycles to equilibrium 
taken in solution of equations (6) and (7) being 
cut by a factor of at least 4 in comparison with 
setting T(x) = constant = T, [computed by 
solving equations (28) and (29)]. 

The adequacy of the two dimensional model 
Consideration is limited to the case when 

ii = F = ii” and z = 71’ = 71’. In 1948, John- 
son [14] published his solutions to equations 
(28) and (29) employing Hausen’s heat pole 
method [6]. Subsequently, Coppage and Lon- 
don [15] recommended for practical use John- 
son’s values of thermal ratio tabulated at nearly 
equal intervals of reduced length x (from 71 = 5 
to 71 = 40) and of reduced period ii (from 
R = 0 to n = 10). The figures of Johnson are 
compared with the figures computed by Will- 
mott’s finite differences method, over the range 
1 6 E < 3, 1 < n < 10, and this comparison 
is set out in Table 2. It will be seen that Johnson’s 
figures of vREG diverge from those calculated 
by the present author for the lower values of 
K/K,. The accuracy of Willmott’s method has 
been previously compared with that of Iliffe 
in a previous paper [ 81 and has been found to be 
satisfactory. Table 3 presents the values of 
K/K, and indicates the extent of the non- 
linear behaviour of temperatures in the re- 

Table 2. Values of thermal ratio, qREG vor ;I’ = x’ and 
n’ = F’, 

(a) Computed using Wil~mott’s [9] method 
(b) Recommendedfigure of Johnson [8] 
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Reduced - 
Reduced period ii 

length A 
1 2 3 

1 (a) 0.3221 0.2930 0.2559 

(b) - 
2 (a) 0.4912 0.4664 0.4305 

(b) - 
3 (a) 0.5937 0.5757 0.5477 

(b) - 
4 (a) 

(b) 

0.6622 0.6490 0.6282 

5 (a) 0.7109 0.7012 0.6856 
(b) 0.7050 0.6950 0.6800 

6 (a) 0.7474 0.7400 0.7280 
(b) 0.7430 0.7340 0.7230 

7 (a) 0.7758 0.7699 0.7605 
(b) 0.7730 0.7650 0.7550 

8 (a) 0.7984 0.7936 0.7861 
(b) 0.7960 0.7890 0.7810 

9 (a) 0.8169 0.8129 0.8068 
(b) 0.8150 0.8090 0.8020 

10 (a) 0.8322 0.8289 0.8238 
(b) 0.8310 0.8260 0.8200 

generator. The truncation error effects 
associated with the numerical solution of the 
equations by Willmott’s method are minimized 
by repeating all computations with the time 
and distance step length’s halved if the calculated 
value of Iv& - &EG 1 > OWOO 1 and this 
procedure is incorporated automatically in the 

Table 3. Value ofK/K, employing Willmott’s [9]$gure 
for VREG 

Reduced 
length 2 

Reduced period ii 

1 2 3 

1 0.9502 0.8287 0.6880 
2 0.9652 08742 0.7559 
3 0.9743 09044 0.8072 
4 0.9800 0.9247 0.8448 
5 0.9838 0.9386 0.8721 
6 0.9865 0.9485 0.8922 
7 0.9885 0.9558 0.9072 
8 0.9900 0.9613 0.9187 
9 09912 0.9656 0.9278 

10 09922 0.9691 0.9350 



Table 3(a) the following way: When 8 = L?’ = Q”, the 

Reduced Reduced Hausen Reduced Reduced Biot 
value of 4 is calculated using 

length period factor length time modulus 

(2D) (2D) (phi) (3D) (3D) (N) $=l-&if Qa0.4 (38) 

1WOO 1.0000 0.9000 1.2903 1.3333 0.9677 
2QOOo 10000 0.9000 2.5806 1.3333 0.9677 Hence 
3wOO 1wOO 0.9ooo 3.8710 1.3333 0.9677 
40300 10000 0.9000 5.1613 1.3333 0.9677 8 = 2/[ 15(1 - 4)], unless fi < 0.4 
5@cKm l+KKKl 0.9000 64516 1.3333 0.9677 
6.0000 1.0000 0.9000 7.7419 1.3333 0.9677 in which case 
7wOO 1WOO 09000 9.0323 1.3333 0.9677 
8.0000 1.0000 09000 10.3226 1.3333 0.9677 B = 4/[0.3 - (2.142/&2] (39) 
9.0000 1WOO O-9000 11.6129 1.3333 0.9677 

1owlO 1.0000 0.9ooo 12.9032 1.3333 0.9677 ii = al/N + &3)- ’ (9 

1WOO 2wOO 0.9000 1.8182 1.3333 2.7273 Hence 
20000 2wOO 09000 3.6364 1.3333 2.7273 
3wOO 2+-000 0.9000 5.4545 1.3333 2.7273 
4QOOO 20000 0.9000 7.2727 1.3333 2.7273 

N = (S/n - 4/3)- ’ (41) 

5wOO 2QOOO 0.9000 9%x)9 1.3333 2.7273 
60000 2QOOO 0.9000 10.9091 1.3333 2.7273 

It should be noticed immediately that it is 

7QOOO 2QOOO 0.9000 12.7273 1.3333 2.7273 possible to calculate, using this formula, in- 
8.0000 2+xxxl 0.9000 145455 1.3333 2.7273 finite and negative values of N which are 
9wOO 2+lOOO 0.9000 163636 1.3333 2.7273 

1oQOOO 2.0000 0.9000 18.1818 1.3333 2.7273 
meaningless. 

This points to an important conclusion, 
1QOOO 3%lOO 0.9000 3.0769 1.3333 6.923 1 
2wOO 3.OoOO 0.9000 61538 1.3333 6.923 1 

namely that for a given value of 4, there is an 

3.0000 30x)O 09000 9.2308 1.3333 69231 
upper value for n beyond which it is impossible 

4.0000 3.0000 0.9000 12.3077 1.3333 6923 1 to relate the two dimensional problem to any 
5.OOOQ 3+lOoO 0.9000 15.3846 1.3333 69231 
60000 3+x)00 0.9000 18.4615 1.3333 6923 1 Table 3(b) 
7QOOO 30000 0.9000 21.5385 1.3333 69231 
80000 3wOO 0.9000 24.6154 1.3333 6923 1 Reduced Reduced Hauseo Reduced Reduced Biot 
9wOO 3%Kul 0.9000 27.6923 1.3333 6.923 1 length period factor length time modulus 

10.0000 3.0000 0.9000 30.7692 1.3333 6.923 1 (2D) (2D) (3I-Y (N) 
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l+M)OO 1+)000 08000 1.6667 0.6667 2.5000 
2QOOO 

computer programme. For most computations, 
1.0000 0.8000 3.3333 0.6667 2.5000 

3+woO lW_lO 0.8000 5OwO 06667 2.5000 
A{ = A/l0 and A? = n/20 were used. 40000 1WOO 0.8000 66667 0.6667 2.5000 

A source of inadequacy in the two dimensional 50300 1WOO 8.3333 0.6667 2.5000 

model is the representation of the inversion of 
60000 1QOOO 0.8ooO 1OWOO 0.6667 2.5000 
7wOO 1.0000 0.8000 11.6667 0.6667 2.5000 

temperature profile within the chequerwall at 8%)00 1+)OcKl 0.8000 133333 O-6667 2.5000 

the reversals. The smaller the value of the 9wOO 1.0000 @8000 15WOO 0.6667 2%00 

correction factor 4, the more severe the effect 
1owOO 1+lOOO 0.8000 166667 0.6667 2.5000 

of these inversions. 1WOO 2wOO 0.8000 5wxl 0.6667 15wOO 

The equations in the three dimensional form 
20xKl 2.0000 0.8000 10%)00 0.6667 15wOO 
3wOO 2.Otnxl 0.8000 150lOO 0.6667 15wOO 

are solved for the values A, B and N (equal in 4QOOO 20Ow 0.8ooO 2o.CmOO 0.6667 15wOO 

both heating and cooling periods) corresponding 50000 20000 08000 25.oooO 0.6667 15x000 

to successive values of C$ = 0.9, 0.8, O-7,0*6, and 
6.0000 20x0 0.8000 3owOO 0.6667 15wOb 
7OOOJJ 2wOO 08000 350xKl 06667 15wOO 

0.5 and the possible values of n and 71 chosen 8.0000 2.OOw 0.8000 4OQOoO 0.6667 150000 

in the range 1 < g < 3,1 < 71~ 10. 9.OwO 2.0000 0.8ooO 45QOOO 0.6667 15+)000 

The values of 8, n and N are calculated in 
10-0000 2w30 08000 SOQOOO 0.6667 15QOOO 

B 
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Table 3(c) 

Reduced Reduced Hausen Reduced Reduced Biot 
length period factor length time modulus 
(2D) (2D) (phi) (3D) (3D) (N) 

1.0000 1GOOO 0.7000 2.1053 04444 4.7368 
2.0000 1GOOO 0.7000 4.2105 04444 4.7368 
3%IOOO 1+lOOO 0.7000 6.3158 04444 4.7368 
4wIO l@@O 0.7000 8.42 11 0.4444 4.7368 
SGOOO 1GOOO 0.7000 105263 044&l 4.7368 
6.0000 1GOOO 0.7000 12.6316 04444 4.7368 
7.0000 1GOOO 0.7000 14.7368 0.4444 4.7368 
8.0000 1XKKKl 0.7000 168421 04444 4.7368 
9.0000 1QOOO 0.7000 18.9474 04444 4.7368 

1oGnIo 1.0000 0.7000 21.0526 04444 4.7368 

1@000 l+MNO 0.6000 2.6472 0.3214 8.2361 
2.0000 1GOOO 0.6000 52944 0.3214 8.2361 
3GOOO l@QO 0.6000 7.9417 0.3214 8.2361 
4.0000 10000 0.6000 10.5889 0.3214 8.2361 
5.0000 1GOOO 0.6000 13.2361 0.3214 8.2361 
6GOOO 10000 0.6000 15.8833 0.3214 8.2361 
7.0000 10000 0.6000 18.5305 0.3214 8.2361 
8.0000 1GOOO 0.6000 21.1777 0.3214 8.2361 
9.oONl 10000 0.6OGO 23.8250 0.3214 8.2361 

10~0000 1QOOO 0.6000 26.4722 0.3214 8.2361 

1NMXl 1GOQO 0~5000 4.0354 0.2216 18.2125 
2.0000 1GOOo 0.5000 8.0708 0.2216 18.2125 
3~0000 l+KKIO 0.5000 12.1062 0.2216 18.2125 
40000 1GOOO 0.5000 16.1417 0.2216 18.2125 
5GOOo 1GOOO 0.5000 20.1771 0.2216 18.2125 
6GOOO 1.0000 0.5000 24.2125 0.2216 18.2125 
7QOOO 1+IOOO 0~5000 28.2479 02216 18.2125 
BGIOO 1QOOO 0.5000 32.2833 0.2216 18.2125 
9GOOO 1QOOO 0.5000 363187 0.2216 18.2125 

10~0000 1QOOO 0.5000 40.3541 0.2216 18.2125 

possible corresponding problem in three di- 
mensions. This means, as has been discussed, 
that it is unlikely that a regenerator problem 
suffering from the effects of non-linear behaviour 
(low K/K,, large n) will be beset simultaneously 
by the effects of the regenerator reversals 
(small 4). It follows that the effects of 4 and 
K/K,, upon the adequacy of the two dimensional 
model can, to some extent, be studied separately. 

Finally, in order to calculate the reduced 
length Ai the formula below is used. 

n = Z(1 + N&3) 

The possible values of Sz, ,4 and N 
a comparison between the two 
dimensional models is made, are 

(42) 

over which 
and three 
set out in 

Table 4. Values of thermal ratio, qREG (for 
R = 2’ andn’ = B”) 

(a) Computed using Willmott’s [9] method 
(b)Computedby 3-Dmethod. #J = 0.9, D = 1.333 

Reduced 
length ;i 

1 (a) 
(b) 

2 (a) 
(b) 

3 (a) 
(b) 

4 (a) 
(b) 

5 (a) 
(b) 

6 (a) 
(b) 

7 (a) 
(b) 

8 (a) 
(b) 

9 (a) 
(b) 

10 (a) 
(b) 

Reduced period ii 

1 2 3 
~_ 

0.3221 0.2930 0.2559 
0.3193 @2849 0.2437 
0.4912 04664 0.4305 
0.4890 0.4590 0.4169 
0.5937 0.5757 0.5477 
0.5924 0.5702 0.5360 
0.6622 0.6490 0.6282 
0.6613 06453 0.6194 
0.7109 0.7012 0.6856 
0.7105 0.6988 06794 
0.7474 0.7400 0.7280 
0.7473 0.7385 0.7239 
0.7758 0.7699 0.7605 
0.7758 0.769 1 0.7580 
0.7984 0.7936 0.7861 
0.7986 0.7933 0.7848 
0.8169 0.8129 0.8068 
0.8172 0.8130 0.8064 
0.8322 0.8289 0.8238 
0.8326 0.8293 0.824 1 

Table 5. Values of thermal ratio, ~~~~ (for 
;i’ = T’ a&n’ = F’) 

(a) Computed using Willmott’s [9] method 
(b) Computed by 3-D method cj = 0.8, s1= 0.666 

Reduced 
length ;i 

Reduced period n 

1 2 

1 (a) 0.3221 0.2930 
(b) 0.3127 0.2667 

2 (a) 04912 0.4664 
(b) 0.4836 04404 

3 (a) 0.5937 0.5757 
(b) 0.5887 0.5553 

4 (a) 0.6622 0.6490 
(b) 0.6589 0.6346 

5 (a) 07109 0.7012 
(b) 0.7089 0.6914 

6 (a) 0.7474 0.7400 
(b) 0.7463 0.7337 

7 (a) 0.7758 0.7699 
(b) 0.7752 0.7655 

8 (a) 0.7984 07936 
(b) 0.7982 0.7909 

9 (a) 0.8169 0.8129 
(b) 0.8170 0.8126 

10 (a) 0.8322 0.8289 
(b) 0.8326 0.8298 
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Tables 3(a), (b) and (c) for the ranges 1 d n d 3 
(no higher integral values of ii are possible) and 
1 <K< 10. 

In Tables 4-8 are set out the values of the 
thermal ratio qREG computed by the three 

Table 6. Values of thermal ratio, 
tjREG (for ;I’ = ;i” and F = F’) 
(a) Computing using Willmott’s [9] 

method 
(b) Computed by 3-D method 4 = 

0.1, D = 0444 

Reduced 
Reduced periodn 

length 2 
1 

1 (a) 0.3221 

(b) 0.3027 
2 (a) 0.4912 

(b) 0.47.49 

3 (a) 0.5937 

(b) 0.5822 
4 (a) 0.6622 

(b) 0.6543 

5 (a) 0.7109 

(b) 0.7056 
6 (a) 0.7474 

(b) 0.7438 

7 (9) 0.7758 
(b) 0.7734 

8 (a) 0.7984 

(b) 0.7969 
9 (a) &8169 

(b) 0.8161 
10 (a) 0.8322 

(b) 0.8320 

dimensional method, together with the corres- 
ponding values computed using the two di- 
mensional method, for C$ = 0.9, 0.8, 0.7, 0.6 and 
05. For 4 = 05, the two sets of values for 
qREG are presented graphically in Fig. 4. 

The thermal ratio is a dimensionless form of 
the chronological mean exit gas temperature. 
If the computed variations with time of this 
temperature are compared for the two methods, 
then a significant difference is noted4 differ- 
ence due to the inadequacy of the 4 correction 
in the two dimensional model. The variations 
take the form indicated in Fig. 3. 

Tables 9-13 set out the values of (A, - B,)/ 
(A3 - BJ for all the cases considered and they 

Table 7. Values of thermal ratio, 
qREG (for ;I’ = ;i” and P = i?‘) 
(a) Computed using Willmott’s [9] 

method 
(b) Computed by 3-D method 4 = 

0.6. Q = 0.252 

Reduced 
Reduced period ii 

length 2 1 

1 (4 
(‘3 

2 (4 
03 

3 (a) 
(b) 

4 (a) 
(b) 

5 (a) 
0-N 

6 (a) 
(b) 

I iaj 

(b) 
8 (4 

(b) 
9 (a) 

(b) 
10 (a) 

(b) 

0.3221 
0.2895 
0.4912 
0.4624 
0.5937 
0.5724 
0.6622 
0.6469 
@7110 
0.7001 
0.7475 
0.7396 
0.7758 
0.7702 
0.7984 
0.7944 
0.8169 
0.8141 
0.8322 
0.8305 

are presented in the form of a graph for n = 1, 
in Fig. 5. 

In the 3-D computation, AZ = 9, and A< = 
~I/10 were used. A? was chosen so that the 
stability factor p was less than 1.5. Reduced 
values of A? and A< were used if l&c - r&cI 
at equilibrium was greater than OGOOl. 

Conclusions 
The use of the correction factor 4 in the bulk 

heat-transfer coefficient, h, is obtained by con- 
sidering a mean solid temperature T, (y, 0) and 
by specifying that at any height in the re- 
generator, the heat transferred per period is 
unchanged, that is 

h s’ WY Y, 0) - t(y, 0) de 

h= ; 

d T,(JJ, 6) - t(y, 6) de ’ x = ’ 
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Table 8. Values of thermal ratio, 
qRREG (for ;i’ = 7i” and I? = i?‘) 
(a) Computed using Willmott’s [9] 

method 
(b) Computed using 3-D method 

4 = 0.5, s2 = 0.174 

Reduced 
Reduced period fi 

length 2 
1 

1 (a) 0.3221 

(b) 0.2725 

2 (4 0.4911 

(b) 04465 

3 (a) 0.5937 

(b) 0.5606 

4 (a) 0.6622 

(b) 0.6390 

5 (a) 0.7109 

(b) 0.6951 

6 (a) 0.7474 

(b) 0.7368 

7 (a) 0.7758 

(b) 0.7688 

8 (a) 0.7984 

(b) 0.7941 

9 (a) 08169 

(b) 0.8147 

10 (a) 0.8322 

(W 0.8316 

where 
d 

T,(y, e) = f J T(x, y, e) dx. 
0 

The time integrals are computed on the assump- 
tion that aT,fatl = constant and the C) correc- 
tion introduced to allow for the inversion of the 
parabolic profile at the regenerator reversals. 

It might be expected, therefore, that for high 
values of K/K,, that is when the effect on non- 

Time, min 

FIG. 3. Comparisons between exit gas temperatures com- 
puted using 3-D equations and using 2-D equations. 

0.6 i 

linear changes in T, with respect to time is 
smallest, the correlation between the thermal 
ratios computed by the 3-D method and those 
by the 2-D method is the best. This correlation 
deteriorates for decreasing values of K/K,. This 

--.- Computed using Willmottklgl method 
- - - Computed using 3-Dmethcd 4~0.5 

51=0.174 Reduced period ii=1 

is borne out by our computations and upon 
examination of Table 3, together with Tables 

I2 3 4 5 6 7 8 9 IO 

A reduced length 

4-7, it will be observed that the smaller the FIG. 4. Comparisons between thermal ratios computed by 

value of K/K,, the greater the divergence 2-D and 3-D methods. 



THE REGENERATIVE HEAT EXCHANGER COMPUTER REPRESENTATION 1011 

“L 

0.8 - 

+h 0.7- l#B=o*s 

t/ 

f 
1 0.6- c#a=oa 

0.2 - 

0.1 I I I I I I I I I 
I 2 3 4 5 6 7 8 9 IO 

h educed length 

FIG. 5. Relationship between $, the ratio of (max. exit temp.- 
min. exit temp.) 2D to the (max. exit temp.-min. exit temp.) 

3D and reduced length iT = 1. 

between the “3-D thermal ratio” and the “2-D 
thermal ratio”, see Fig. 4. 

Although for high values of K/K, (>0*9) 
the 2-D method can be relied upon to provide 
quite an accurate estimate of time mean exit gas 
temperature, because h involves time means, no 
accuracy can be placed upon the computed 
time variation of exit temperature. When 4 + 1, 
however, kV,,(y, 0)/Z@ becomes equal to 
U(x, y, @/a0 for 0 < x < d for the most of each 
period, particularly as K/K, + 1. 

Table 9. Values of ratio: 
(Max. exit gas temp - min exit gas temp) 2D 

(Max. exit gas temp - min exit gas temp) 3D 

Computed by 3-D method 4 = 0.9,62 = 1.333 

Table 11. Value of ratio : 

(Max. exit gas temp - min. exit gas temp) 2D 
(Max. exit gas temp - min. exit gas temp) 3D 

Computed by 3-D method 4 = 6.7, 
8=0444 

Reduced Reduced period II 

length Z 
1 2 3 

Reduced Reduced period ii 

length 2 
1 

1 06484 0.6179 0.5847 1 0.3726 
2 0.6726 0.6881 0.7225 2 0.4217 
3 0.6860 0.7192 0.7687 3 04423 
4 0.6926 0.7313 0.7820 4 0.4501 
5 0.6956 0.7360 0.7858 5 0.4534 
6 0.6970 0.7382 0.7877 6 0.4554 
7 0.6977 0.7397 0.7897 7 0.4569 
8 0.6983 0.7409 0.7919 8 0.4583 
9 0.6987 0.7421 0.7944 9 0.4594 

10 0.6990 0.7432 0.7970 10 04606 

Table 10. Values of ratio : 

(Max. exit gas temp - min. exit gas temp) 2D 

(Max. exit gas temp - min. exit gas temp) 3D 

Computed by 3-D method 4 = 0.8, B = 0.666 

Reduced Reduced period ii 

length Z 
1 2 

1 0.467 1 0.4502 
2 05085 0.5667 
3 0.5288 0.5987 
4 0.5375 0.6073 
5 05413 0.6105 
6 0.5432 0.6133 
7 0.5444 0.6162 
8 0.5454 0.6190 
9 0.5462 0.6235 

10 0.5469 0.6273 

At the reversals this is not true, and as 4 de- 
creases, the greater is the effect of these reversals. 
Tables 9-12 reveal significantly decreasing value 
of (A, - B&4, - B3) the smaller the value of 
4. As K/K, decreases, (A2 - B,)/(A, - B3) also 
becomes smaller but the effect of K/K, is not 
as significant as the effect of the factor 4. As 
K/K, + 1 as reduced length _4 increases, the 
value of (A, - I?,)@, - BJ or II/ becomes 
asymptotic, as shown in Fig. 5. 

The three dimensional method of solving the 
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Table 12. Value of ratio : 

(Max. exit gas temp - min. exit gas temp) 2D 
(Max. exit gas temp - min. exit gas temp) 3D 

Computed by 3-D method, 4 = 0.6, 
B = 0.252 

Reduced 
Reduced period n 

-___ 
length A 1 

1 0.3157 
2 0.3676 
3 0.3853 
4 0.3909 
5 0.3934 
6 0.3953 
7 0.3971 
8 0.3989 
9 04006 

10 0.402 1 

regenerator equations involves the heavy ex- 
penditure of computer time and on small com- 
puters, the method is impracticable.‘Further it is 
possible in practice to develop methods of 
solving the 2-D equations for non-linear prob- 
lems such as those involving temperature 
dependent specific heat and time varying flow 
rate. Although such developments of the 3-D 
model are possible in theory, the amount of 
computer time involved, even on a very fast 
computer, appears prohibitive. 

Table 13. Value of ratio: 

(Max. exit gas temp - min. exit gas temp) 2D 

(Max. exit gas temp - min. exit gas temp) 3D 

Computed by 3-D method, 4 = @5, 
Q = 0.174 

Reduced 
Reduced period ii 

length z 1 

1 0.2665 
2 0.3206 
3 0.3337 
4 0.3368 
5 0.3387 
6 0.3409 
7 0.3436 
8 0.3463 
9 0.3492 

10 0.3518 

Although consideration here is limited to the 
plain slab problem, the principles by which the 
reliability of a 2-D model to represent more 
complex geometries can be tested are set out. 
Use of the factors 4 and K/K, will be equally 
applicable. Hausen [l] has developed formulae 
for 4 for other geometric shapes. 

In using 2-D methods of solving the regenera- 
tor equations, caution should be used in 
interpreting the computations of K/K, < O-9 
and no reliance should be placed upon the 
calculated time variations of temperature for 
values of 4 < 0.9. For Cowper stoves, typical 
figures are 

a = 0.02 ft2/h, d = 0.052 ft 

P, = 2 hr, P, = 1 hr, 4 = 0.97 

indicating caution need only be applied when 
K/K, becomes small (this can vary from 0.7 to 
O-95 for Cowper stoves) or if very short cycles 
are considered which reduces the value of 4. 
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APPENDIX 

An Estimate of the Longitudinal Conductivity 
in the Heat Storing Mass 

The temperature gradient down the re- 
generator in, for example, the heating period is 
approximately (thi - thm)/L. 

The volume of the chequerwork is Ad 

Therefore the cross sectional area of chequer- 
mass is AdJL 
Therefore the rate of longitudinal heat con- 
duction in the chequerwork is approximately 

AdA(thi - thm)/l? Btu/h (Cal/s). 

Rate of heat input to regenerator by the gas 
in the heating period is 

WS (thi - thm) Btu/h (Cal/s) 

The ratio y 

longitudinal heat conduction Adl 
Y= heat input by gas =Lzws 

For a Cowper Stove, typical figures are : 

A= 200,000 ft’ 
d = 0.05 ft 
1 = 0.7 Btu/ft h/“F 
L= 80 ft 

W = 200,000 lb/h 
S = 0.25 Btu/lb “F 

Therefore 

y = 2.2 x 1o-5 

The figure for thermal conductivity I refers 
to a ceramic material. 

This implies that longitudinal conduction can 
be neglected and indeed most authors always 
assume that a term in the differential equations 
which accounts for this can be ignored. Tipler 
[16] mentions a value of lo-’ for y in the case 
of regenerators used in Gas Turbines and con- 
sidered that longitudinal conduction could be 
neglected. 

R&m&La reprtsentation ad&luate du comportement thermique de l’&changeur de chaleur par r&cup&a- 
tion a attire l’attention des mathbmaticiens depuis de nombreuses annks. Presque tous les efforts ont 
&ttc dirigb vers les problhmes bidimensionnels, dont on a eu besoin pour calculer les tempkratures dans 
le rtcupCrateur en fonction de la distance, dans la direction de l’&oulement gazeux, et du temps. L’effet 
de la conductivitC thermique B l’inttrieur du mat&au d’accumulation de la chaleur du rQuptrateur dans 
une direction perpendiculaire B la direction de l’&oulement gazeux a C&, soit ignore soit incorporC avec 
un coeflicient de transport de chaleur discret ou global Dam cet article, les equations tridimensiormelles 
sont prises en considtration et l’on discute I’effet de l’hypothbse simpliticatrice selon laquelle le probl&me 
peut &re consid& comme ayant seulement deux dimensions Le problbme de la conductivitt thermique 
longitudinale n’est pas examinh puisqu’on a montrk que son effet dans la plupart des cas pratiques est 

ntgligeable. 
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Zusammenfassung-Die adaquate Beschreibung des thermischen ~bertragungsverhaltens von regenerativ- 
en Warmeaustauschem hat schon seit vielen Jahren bei Mathematikem Interesse gefunden. Fast alle 
Bemiihungen haben sich auf das zweidimensionale Problem konzentrierf d.h man hat sich die Aufgabe 
gestellt, die Temperaturen im Regenerator als Funktion der Entfemung, gemessen in Striimungsrichtung, 
sowie der Zeit zu berechnen. Der Einfluss der WLmeleitfahigkeit in der Speichermasse des Regenerators 
quer zur Striimungsrichtung ist entweder vemachllssigt, oder in Form eines bestimmten Zusatzwider- 
standes dem Warmeiibergangswiderstand zugeschlagen worden. In dieser Arbeit werden die dreidimen- 
sionalen Gleichungen zugrunde gelegt turd es wird diskutiert, inwieweit sich die Annahme, das Problem 
kiinne rein zweidimensional behandelt werden, auswirkt. Das Problem der Llbngwlrmeleitung wird 
nicht weiter untersucht, da gezeigt worden isf dass dieser Effekt in den meisten praktischen Fallen ver- 

nachllssigbar bleibt. 

AHnoTaqsisI-sagasa J'~OBJIt?TBOpHTWIbHOrO OIIHCaHIlR @iOTbI pWeKep3THBKOrO TennO- 

06MeHHHKa MHOI'lIe I'OAbl IIpHBJIeKaJIa BHLlMaHHe MaTeMaTAKOB. n0YTI.I BCe IIOIIbITKLl 6m1a 

BanpaBneKn Ha pemeBKe fiByMepBbrx aaBas, T.e. TpdOBEIJIOCb PaCCYMT3Tb TeMIIepaTypbI B 

pereHepaTope KaK +y~KuKm paccToKBKn B Hanpasnemrrr TeYeHKfr ra3a K BpeKeKn. EnaKKKe 
TenJIOnpOBOgHOCTB B MaTepKaJIe, 3KKyMyJIKpyIOmCM TCnJIO, B Hanp3BJIeHKrr nCpIB?HgIrKyBnp- 
HIM Hanpasnemno noToKa ra38, na60 npeHe6peraJrOCb, J&O ysKTbrBanocb 06ma~ ~03#1@a- 
uHeHTOM TCnJIOO6MCH3. B gaHHOt CTaTbe paCCM3TpKBamTCK TpeXMepHbIe ypaBHCHKR )I 
o6cymgaeTcK ynpomaromee npegnono?KeBBe o TOM, qT0 33AaYy MOWHO paCCMaTpKB3Tb KaK 
gByMOpHyl0. DpOgOBbHaK TenJIOnpOBO~HOCTb He p3CCMaTpHB3CTCfI, T.K. IIOK333H0, qT0 &i 

BJIARHIleM B 60JIbUlHHCTBe IIpElKTAWCKM BaXCHMX CJIyWeB MOFKHO IIpeHt?6pIb. 


