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Abstract—The adequate representation of the thermal behaviour of the regenerative heat exchanger has
attracted the attention of mathematicians for many years. Nearly all efforts have been directed towards the
two-dimensional problem, that is it has been required to calculate the temperatures within the regenerator
as function of distance, in the direction of gas flow, and of time: The effect of thermal conductivity within
heat storing material of the regenerator in a direction perpendicular to the direction of gas flow has either
been ignored or incorporated within a lumped or overall heat-transfer coefficient. In this paper, the three-
dimensional equations are considered and the effect is discussed of the simplifying assumption that the
problem can be regarded to be in two dimensions only. The problem of longitudinal thermal conductivity
is not considered since it has been shown that its effect in most practical cases is negligible.

NOMENCLATURE

regenerator heating surface area [ft?,
cm?];

maximum exit gas temperature, cool-
ing period calculated by 2-D method
[°F, °Cl;

minimum exit gas temperature, cool-
ing period, calculated by 2-D method
[°F, °C];

maximum exit gas temperature, cool-
ing period, calculated by 3-D method
[°F, °C];

minimum exit gas temperature, cool-
ing period, calculated by 3-D method
[°F, °Cl;

specific heat of heat storing matrix
[Btu/1b °F, cal/g °C];

semi-thickness of wall of heat storing
matrix [ft, cm];

surface heat-transfer coefficient [Btu/
ft> h °F, cal/cm? s °C] ;

overall heat-transfer coefficient [Btu/
ft> h °F, cal/cm s °C] ;

Hausen ratio defining extent of the
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non-linear temperature changes in the
regenerator;

length of regenerator [ft, cm];

mass of heat stdoring matrix [lb, g] ;
mass of residual gas in the regenerator
(Ib, g];

Biot modulus, hd/4;

length of period of operation [h, s];
stability parameter, aA0/Ax? = Aw/
Az? in the numerical solution of the
differential equations;

specific heat of gas [Btu/lb °F, cal/g
°Cl;

temperature of heat storing matrix
[°F, °C];

mean (in x direction) temperature of
heat storing matrix [°F, °C];

gas temperature [°F, °C] ;

entrance gas temperature in the heat-
ing period {°F, °C];

entrance gas temperature in the cool-
ing period [°F, °C];

time mean exit gas temperature in the
heating period [°F, °C];
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tcm,  time mean exit gas temperature in the
cooling period [°F, °C];

W, flow rate of gas [1b/h, g/s];

w, dimensionless time;

X, distance from surface of heat storing
mass in a direction perpendicular to
gas flow [ft, cm] ;

P distance from regenerator entrance in
adirection parallel to gas flow [ft,cm] ;
z, dimensionless distance from surface

of heat storing matrix in a direction
perpendicular to gas flow.

Greek symbols
o, thermal diffusivity of heat storing
matrix [ft?/h, cm?/s] ;
1, dimensionless time (two dimensional
problem);

Wree, thermal ratio;
0, time [h, s];

A, thermal conductivity of heat storing
matrix [Btu/ft h °F, cal/em s °C];

4, reduced length (three dimensional
problem);

A, reduced length (two dimensional
problem);

i, dimensionless length in direction of
gas flow (two dimensional problem);

g, dimensionless length in direction of
gas glow (three dimensional problem);

I, reduced period (two dimensional
problem);

0, density of heat storing matrix [Ib/ft>,
g/em®];

v, dimensionless  ratio (4, — B,)/
(A; — By);

o, correction applied to account for the

inversion of the parabolic solid tem-
perature profile at the regenerator

reversals;
Q, reduced time (three dimensional
problem);
Subscripts
Js refers to position in y direction;

r, refers to position in x direction ;

s, refers to position in time 6;
m, refers to semi-thickness of matrix wall ;
0, refers to surface of matrix wall.
Superscripts
" refers to heating period ;
" refers to cooling period.
INTRODUCTION

THE regenerator consists of a heat storing
matrix, often called “chequerwork”. Hot gas
passes through the channels of the chequerwork
and gives up part of its heat to the matrix material.
The hot gas is then switched off and cold gas is
passed through the same channels and the heat
is regenerated from the chequerwork to this gas.
In due course, another reversal occurs when the
cold gas is shut off and hot gas is passed through
the chequerwork channels again.

There are thus three processes of heat transfer
which take place in a thermal regenerator.

(i) Heat is transferred within the chequerwork
material. This is represented by the diffusion

equation:
0*T
+ —} (1)

oT *T
0Z*

6~ Mo

(Here Z is used a direction perpendicular to
x and y.)

The thermal conductivity in matrix solid in a
direction parallel to that of the gas flow can be
shown to be negligible (see Appendix) particu-
larly in the case of chequerwork made of ceramic
material, and this is used in most regenerators for
industrial application.

(ii) Heat is transferred across the surface of the
chequerwork ;

(iii) Heat is gained/lost by the gas passing
through the regenerator and the gas currently
resident in the channels of the chequerwork.
The equation is:

hA(T, — 1) = WSL% + mSg—g. 2)

Equations (1) and (2) express the solid tempera-

ture, T, as function of (x, y, z, 6). One simplifying
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assumption is included, therefore, to reduce
the dimensions of the problem. A cross section
of part of the regenerator can be represented by
Fig. 1. The chequerwork is considered to be a
plain wall of specified semi-thickness d, and it is

semi-homogenous slab, in which in the direction
parallel to gas flow,the conductivity is zero and
in the perpendicular direction is finite.

Hausen [1] developed methods for dealing
with slabs, circular cylinders and spheres, while
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Frg. 1. IHustration of chequerwork cross section and the
descriptive differential equations.

assumed that for any complex chequer shape,
the thickness of the “equivalent” plain wall can
be calculated. A general picture of a regenerator
is to be found in Fig. 2. The problem is thus
reduced to the consideration of the solid as a

Heating period
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FiG. 2. Schematic drawing of a Cowper stove showing levels

in chequerwork for which gas and solid temperatures are
calculated.

more recently Razelos and Lazaridis [2] have
dealt with the case of the hollow cylinder.
Butterfield et al. [3] have treated the cases of
the hollow cylinder, slab and hollow square
section. In these three papers, only a single
level in the middle of the regenerator is effec-
tively considered whereas here, simulation of
the whole regenerator is attempted.
The differential equation (1) becomes:
oT _ o*T
6~ "oxF
At the surface of the chequerwork, x =0
and x = 2d. At the wall semi-thickness, x = 4.
The boundary conditions are specified as:

()

aT
Fxlens = 0 4)
or h
™ o = Z(’R} -0 &)
x=2d

At the entrance to the regenerator, y = 0, and.
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the gas temperature is considered as not to
vary with time.

A regenerator is sometimes called a contra-
flow regenerative heat exchanger. The adjective
“contra-flow” is applied because the hot gas
passes through the regenerator channels in the
opposite direction to that of the cold gas. Since
the direction y is always measured from the
gas entrance of the heat storing mass, the contra-
flow operation is incorporated by the equation:

T’(st . 0) = T(x, ¥, P)

where T'(x, L — y, 0) is the chequerwork tem-
perature at the beginning ofa period immediately
after a reversal and T(x, y, P} is the correspond-
ing temperature immediately before the reversal.

After a large number of successive cycles of
identical operation, the regenerator achieves a
dynamic equilibrium such that the gas and solid
temperature distribution throughout the re-
generator is identical at the same point in time
in successive cycles. It is for this dynamtic or
cyclic equilibrium that the solution to the dif-
ferential equations is often required.

DIMENSIONLESS PARAMETERS

The following replacements are possible in
equations (2) and (3).

g..,.h_A_ P L I DL
“wsL” PT@ VTEY Twr?
the equations then become:
oT @°T
e ©
ot
— =Ty — & 7
e = Do (N

For each period of the cycle, that is the heating
period and the cooling period, it is possible to
define the descriptive dimensionless parameters,
“reduced time” 2 and “reduced length” A.

Q=~§5{P—~ m/W}

A J. WILLMOTT

hA
A=—
wSs
€ and A correspond to the values of w and ¢
when8=Pandy = L.
The boundary conditions represented pre-
viously by equations (4) and (5) now become :

aT

a2, =0

z=1

®)

=NT, -9 ©®

L]

=
where N = hd/A, the Biot modulus.

The regenerator and its operation can thus
be described by six dimensionless parameters
and the gas inlet temperatures for the two periods
of operation. These are set out in Table 1{a).

Table Ya)

Heating  Cooling

period period
Q Q" Reduced time
A A" Reduced length
N’ N” Biot modulus
thi tci Entrance gas

teraperature

The single prime is used to refer to the heating
period and the double prime to the cooling
period.

Methods of solution of the differential equations
There are two basically different approaches
to the solution of the equations. The first method
is of the closed type where the equations are
solved directly for cyclic equilibrium. The
unpublished method of Collins and Daws [4]
is an example of the closed methods, although
Hausen, Iliffe [ 7] and Nahavandi and Weinstein
[5) proposed similar approaches to the two-
dimensional regenerator equations. The other
procedure, including the ones described here, are
of the simulation type where the mathematical
model is cycled to equilibrium. Several methods
of this type have been described for the equations
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in two dimensions, including that of Hausen [6]
and Willmot [8]. An analogue computer solution
to the unsimplified equations used here is
described by Ridgion, et al. [9]. The calculating
of numerical solutions to the differential equa-
tions in the three dimensions x, y, and 6, by
numerical step by step procedures was made
possible by the advent of computers as fast as
the University of Manchester ATLAS computer.
Without a machine of this speed, the solution
of the equations for just one set of operating
parameters would have been impracticable.

By solving the differential equations (6) and
(7) in finite difference form, the thermal re-
generator is simulated and can be cycled to
dynamic equilibrium. The numerical solution
of equation (6) involves the problem of stability
unless special precautions are taken.

We first define p to be Aw/(Az)* where Aw is the
time step length and Az is the distance step
length into the chequerwall. If the explicit
difference form of equation (6) is employed,
that is

oT

Ty1 =T, + Aw—
s+1 s+ waws

or T;‘,s+1 = T;-,s + p(T;-+1,s
- 2’1-;',3 + T;'—l,s) (10)

then unless p < 4, the problem becomes unstable.
In 1947, Crank and Nicolson [10] proposed

an application of the trapezoidal formula for the

integration of the diffusion equation, namely :

)

14
or T,,,,=T; +§ {Tii501 — 2T 541

oT
Ts+1=T;+‘_‘a_w 5‘;

Aw (0T
2

s+1

T Loy s+ Loy s =25+ T_ ) (11)
This yields an implicit scheme in which in order
to calculate the values of 7, ,,, for r =0
(surface), 1, 2, .... m (brick semi-thickness),
it is necessary to solve the resulting algebraic
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equations, which are essentially of the form
ET,, = FT;

where E and F are tridiagonal matrices.

In order to find T, ; = E~'FT, involves more
labour than the calculation of T,,; by the
explicit method. This is more than compensated
for by the fact that p can take all values without
loss of stability, although as p increases, there
is an increase in truncation error.

Mitchell and Pearce [11] pointed out that
the Crank—-Nicolson method is not the optimum
implicit scheme since it does not have the mini-
mum truncation error possible. They specified
that the optimum difference representation of
equation (6) is:

5+6pT i1 +G—3D)(Tuy, 541
+ 7:-—1,s+1) = (5 - 6p) ’1:-,5 + (% + 3P)

x (Lirs+ Ty (12)

In order to compute T,,, from T; using the
Mitchell and Pearce scheme involves no more
effort than is required for the Crank—Nicolson
method, and is equally stable for all values of p.

This method of solving equation (6) has been
incorporated into this simulation of the regener-
ative heat exchanger. It has been modified to
take note of the difference representation of the
boundary conditions (8) and (9) and equation
N.

At the brick semi-thickness, r = m and T, ,
= T,_, since 0T/0z, = 0. At this point, the
difference equation becomes
(5 +69) Toerr + (1 = 6D) Ty

= (5 - 6P) Tm,s + (1 + 6p) Tm—l,s' (13)

Equation (9), at the solid surface, is presented
in the form
T, =T, + 2AzN(t — T).

Substituting for T, in equation (12) yields:
{5+ 6p+(Bp—3)ENA} Ty s+,

+ (1 =6p) Ty 541 + G — 3D)(2NA2Z) £y,
={5-6p -G +3pDQNA2} T, ,

+(1+6p)Th ,+ G +3p)2NAZ) L, (14)
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Using the notation:
Ay =5+ 6p+(3p - DQ2NAz)
B, = (3 ~ 3p)(2NAz)
Ay =5-6p—(3+3p)(2NA2)
B, = (3 + 3p) (2NA2).

This equation becomes:

ATy o1 + (1 = 6p Ty 541 + Bitguy
= ATy + (1 +6p) T,  + Bot,,  (15)

Equation (7) can be represented, using the

trapezoidal formula in the following form:
1 —

ljg1 = e gf}‘ + 1 ﬁ ﬂ(To,jH + T1p,5)
atanytimes =0, 1, 2, ..., where f = Af/2.

The finite difference representations of equa-
tion (6) set out above are applicable at all levels
down the height of the regenerator at j = 0 (top
of the chequerwork), 1, 2, ..., n (base of the
chequers). However, at the entrance (j = 0), the
gas temperature does not vary with time, that is
t, == constant. Hence at j = 0, equation (15)
becomes:

AITO,S+1 + (1 - 6[)) Tl,s+1
=AoTo,s + (1 + 6p) Ty s + 6p(2NA2Z) £, (17)
At the other levels of the regenerator, j = 1,

2,..., n, the gas temperature at time s+ 1
is obtained using the implicit form:

p

Lowi,j+1 — 115 ﬁTO,s+1,j+l

(16)

1-8 B
1+ﬁfs+1,j+mTo,s+1,j-

These sets of equations are gathered together
into matrix form

(18)

UlT,1]j=0 = VI[Tutdj=0 (19
G[T.’S*I*l.js ts+1,j]
=H(T, jt; ; Tos41,j—15bs+1,j-1] 20

where U, ¥, G and H are tridiagonal matrices.

J. WILLMOTT

The integration process consists of computing
T..1 = U 'W[T,t,] at level j = 0 and then

[Ts1nt544]

-1
=G HI[T t; j, To,s41,j-10bsr1,5-1)

at levels j = 1, 2, 3, ... successively to n. This is
repeated for s =1, 2, ... until the end of the
current period of operation. The solid tempera-
tures at the beginning of the period are specified
arbitrarily at the commencement of the inte-
gration processes and thereafter by the solid
temperatures computed at the end of the previous
period.

At the end of a heating period, the direction
of gas flow is reversed and in the cooling period,
the gas enters the regenerator at j = n (at the
base). The method of integration is exactly the
same although the matrices U, ¥, G and H
usually will be different and the integration
process will proceed from j=nn—-1 n—2
to2,1,0

The tridiagonal elements of the matrices U,
¥, G and H are calculated and stored, and an
arbitrary temperature distribution in the heat
storing matrix is chosen. The gas temperatures
at the beginning of the heating period are then
calculated using equation (5) and the specified
inlet gas temperature. Since U and G are tri-
diagonal matrices the process of Gaussian
elimination is simplified. Advantage is taken
of the fact that the row multipliers need only
be calculated once and these are therefore stored
at the beginning of the computation. The
computer representation of the thermal re-
generator, the physical characteristics and opera-
ting conditions of which are specified as input
data to the program, is cycled to equilibrium or
through a preset number of cycles.

Equilibrium is considered to be achieved if
successive final exit gas temperatures, heating
period, from cycle to cycle, differ by less than
1 in the fifth significant figure.

The explicit method
The explicit finite difference replacement of
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the diffusion equation is used, namely :
T;',s+1 = ’I:',s + p(’I:+l,s - 27;-,s + T;—l,s)~ (10)

At the solid surface, when s = 0, the boundary
condition represented as:

T—l == Tl + 2AZN(t - To)

is substituted into equation (10) to yield:
To,s+1 = 76,5 + 2P[T1,s - TO,s
+ AN -T )} (21

At the semi-thickness of the chequer wall,
r=mand T, ,, = T,_,. Equation (10) becomes

Tm,s+1 = Tm,s + 2p(Tms - Tm—l,s)' (22)

Again, the difference equation (16) is used to
represent equation (7).

At the beginning of a heating period of opera-
tion, the gas temperatures are calculated using
equation (16) at j =1, 2, ..., n. The inlet gas
temperature is pre-specified as a boundary
condition at j = 0.

Next, at levels j=0, 1, 2, ..., n the solid
temperatures at positions r =0, 1, 2, ..., m
into the chequerwork for time Aw, i.e. fors = 1,
employing equations (10), (21) and (22). This
process is again repeated for s = 2, 3, ... until
the end of the period.

The whole procedure is repeated for the cool-
ing period except that the reversal (counterflow)
condition is incorporated. The gas temperatures
arecomputed at j=m—1,m—-2,...,2,1,0
using a suitably modified version of equation
(16). The inlet gas temperature is specified as a
boundary condition at j = m. The integration
of equation (6) then proceeds at j =m, m — 1,
m-2...,210.

This “heating-cooling” cycle is repeated until

cyclic equilibrium is reached or for a specified
number of cycles.

Although this method, originally discussed by
Nusselt [ 17] as long ago as 1927, is prohibitively
slow due to the large number of steps required if
stability of the integration process is to be main-
tained, it is useful for exploratory studies
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especially if equation (5) involves a non-linear
term to account for radiative effects.

Reduction of the number of dimensions

At any height y in the regenerator, the solid
temperature is a function of the distance x into
the chequerwall and of time 6. The surface of the
wall is represented by x = 0 and the semi-
thickness by x = d. At any such height y, the
mean solid temperature T,, (y, 0) is defined by

d
1
Tm(,Vs 9) = EJ‘ T(X, ¥ 9) dx (23)
[

‘and an overall heat-transfer coefficient s can

then be defined by the equation
WT, — ) = T, — 1)
where T; is the surface solid temperature.
By integrating equation (3), with respect to
x Hausen has demonstrated that
o, _ K
0  dpc
Adp = M, the mass of the chequerwork, and
thus equation (25) becomes

(24)

t-T,) (25)

oT, hA
i M_C(t - T) (26)
Equation (2) is modified to become:
ot ot
hA(T, — 1) = WSL@ + mS 5 27

If the replacements 1 and 5 are made in equations
(26) and (27) where

_ hdy _ ha m
= wsr ”‘MC( w¢§

they become

n -1 (28)
0” - m.

ot

5= (T = (29)
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Corresponding to each period of the cycle,
Hausen proposed the dimensionless parameters,
“reduced length”, A and ‘*‘reduced period”,
.

A = hA/WSL,

Thus, using this two dimensional representa-
tion of the regenerator, there are four dimension-
less parameters and the inlet gas temperatures
to describe the system, set out in Table 1(b).

Table 1(b)
Heating  Cooling
period period
A a Reduced length
w m Reduced period
thi tci Entrance gas
temperature

Various methods have been proposed for the
solution of equations (28) and (29), in particular
those of Hausen [6], Iliffe [7], Nahavandi and
Weinstein [5] and Willmott [8]. However, the
adequacy of equations (28) and (29) to represent
to the thermal behaviour of a regenerator
depends on the use of the lumped (sometimes
called “overall””) heat-transfer coefficient h. In
his paper of 1942, Hausen [12] suggested that
provided the mean solid temperature T,, varies
linearly with time, the coefficient A can be
represented by

h=(1h + d/33)"!

where ¢ is the correction factor to account for
the inversion of parabolic temperature profile
within the chequerwall at the beginning of each
period of regenerator operation.

Hausen proposed:

d (1 1
- EfY
15« ‘P P”

L. d* {1 1
if &—{F+—Pg}<5 (30)

A.J. WILLMOTT

3 2:142
~ /03 + 24%(1/P" + 1/P")]

if (@*/oa)1/P" + 1/P") > 5

¢

(31)

or employing the dimensionless parameters,

1/1 1 1 1
~ 2142
JI03 + 21/2 + 1/27)]
11
if~+—>5 (33)

Ql Q!/
Relation between the dimensionless parameters
Reduced length A

1 ws WS(1 d¢\ 1 N¢
7=ﬁ=7(z+§1‘> = (1 +T)
Hence:
A = (1+N¢3) L
Reduced period IT

L_MC_MC/l d¢)\ 1/1 ¢
T har - 4P\n t3: /)70 N+_3)'

Hence: T = XUN + ¢/3)!

At a position remote from the current re-
generator entrance, the mean solid temperature
varies linearly with time, but because the gas
entrance temperature is constant, the closer to
the entrance the more non-linear the time varia-
tion of the solid temperature. The non-varying
entrance gas temperature can be said to propa-
gate the non-linear behaviour down the
regenerator. An estimate of the extent of these
non-linearities was suggested by Hausen [12] in
form of a factor K/K,, where 0 < K/K, < 1.
The bigger K/K,, the smaller the effect of the
non-linear behaviour of the solid temperature.
When W'S'P’ = W'S"P”, then

_K,=_1&<_L,+_Ll>_ (34)
Ky 1 —1ngge\A4 A
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Nrec 18 the thermal ratio defined for the heating
period as

Nree = (thi — thm)/(thi— tci) -
and for the cooling period as
Nree = (tem — tei)/(thi — tci).

It is to be noted that thm and tcm are the
chronological mean gas exit temperatures for
the heating and cooling period respectively.
When W'S'P’ = W”S"P", then it is easily
verified that at thermal equilibrium, #53ge=
NREG-

This definition of K/K, is not completely.
adequate since it involves A, which depends
upon ¢. It will be recalled that ¢ is computed
upon the assumption that T,, varies linearly
with time whereas K/K seeks to represent the
non-linear behaviour of 7,, near to the re-
generator entrance. However, low values of
K/K, for a specified value of A are associated
with long cycle times, whereas low values of ¢
are associated with short cycle times. In general,
therefore, the severe effects of the inversion of
the parabolic temperature profile within the
chequerwall at the reversals of regenerator
operation are not usually felt at the same time
as the severe effects of the propagation from the
regenerator entrance in either period, of non-
linear behaviour of mean solid temperature, 7,,.

It might be noted here, however, that the
author has found Hausen’s K/K|, factor useful
for purposes other than it was intended.
Hausen [13] obtained an overall recuperator-
like heat exchange coefficient K, directly re-
lating the entrance and time mean exit
temperatures of the gases in the two periods of
operation. The accuracy of the coefficient K,
depended upon the linear variation of solid
temperature with time and in 1942, Hausen {12]
introduced the correction factor K/K, to
account for the propagation of non-linear
behaviour by the constant entrance gas
temperatures.

Subsequently, Willmott [8] employed the
factor K/K, as a measure of the truncation
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errors in the finite difference representation of
equations (28) and (29). In this paper, K/K, is
used as a parameter specifying the extent of
non-linear behaviour of solid temperature down
the regenerator from the gas entrance.

There is another source of non-linear
behaviour of the gas and mean solid tempera-
tures which accentuates the effect of the con-
stant entrance gas temperatures, namely the
non-equality of W'S'P" and W”S"P", or in
terms of the dimensionless parameters, of
II'/A" and TT"/A". In this paper, consideration
is restricted to the case when W'S'P’ = W"S"P”
and, hence, when %56 ="grec

Computer solution of the equations

Willmott’s method of 1964 has also been
programmed and a comparison made between
the exit gas temperatures computed by the
implicit method for equations (6) and (7)
described in this paper and by the 1964 method
for the equations (28) and (29).

Clearly, the solution to equations (28) and
(29) for dynamic equilibrium should be very
close to the corresponding solution to the
equations (6) and (7) in three dimensions, w, z,
and &. Further, the time taken to solve equa-
tions (28) and (29) is considerably less than that
to solve the three dimensional problem. The
method of computation in the comparison
undertaken, has been to solve the equations (28)
and (29) for cyclic equilibrium and to employ
the calculated solid temperature profile T, (u)
at the end of the cycle at dynamic equilibrium
as an initial estimate of the solid temperature
distribution for the three dimensional problem.

Assuming 07/06 = constant in equation (3)

T(x) = Ty + 0-5Kx(x — 2d) (35)
where T(x) is the value of T at x and T, is the

surface temperature at x =0 and x = 2d.
K takes the form:

19T _k

—;%=ﬂ(t— T.) (36)
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from equation (25); in equation (35), T, can be
computed from equation (24).

Ty =t + h(T, — t)/h. (37

At any height of the regenerator, an initial
estimation of the temperature profile can there-
fore be made. T,, is computed by solving equa-
tions (28) and (29) for cyclic equilibrium. K and
T, are then calculated using equations (36) and
(24). The temperature profile within the re-
generator chequerwork is calculated using
equation (35).

The three dimensional equations are then
solved for cyclic equilibrium employing this
calculated profile as the initial conditions to the
problem.

In practice, this has been found to be well
worth while, the number of cycles to equilibrium
taken in solution of equations (6) and (7) being
cut by a factor of at least 4 in comparison with
setting T(x) = constant = T,, [computed by
solving equations (28) and (29)].

The adequacy of the two dimensional model
Consideration is limited to the case when
IT=1T'=IT"and A = A = A”. In 1948, John-
son [14] published his solutions to equations
(28) and (29) employing Hausen’s heat pole
method [6]. Subsequently, Coppage and Lon-
don [15] recommended for practical use John-
son’s values of thermal ratio tabulated at nearly
equal intervals of reduced length A (from 4 = 5
to A4 = 40) and of reduced period IT (from
IT = 0 to IT = 10). The figures of Johnson are
compared with the figures computed by Will-
mott’s finite differences method, over the range
1< <3, 1< <10, and this comparison
is set out in Table 2. It will be seen that Johnson’s
figures of nggg diverge from those calculated
by the present author for the lower values of
K/K,. The accuracy of Willmott’s method has
been previously compared with that of Iliffe
in a previous paper [8] and has been found to be
satisfactory. Table 3 presents the values of
K/K, and indicates the extent of the non-
linear behaviour of temperatures in the re-
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Table 2. Values of thermal ratio, #gg (for A' = A" and
0= ﬁ//)
(a) Computed using Willmott’s [9] method
(b) Recommended figure of Johnson [8]

Reduced Reduced period IT ]
length A 1 5 3
1 (a) 0-3221 0-2930 0-2559
(b) — — —
2 (a) 0-4912 0-4664 0-4305
(b) — — —
3 (a) 0-5937 0-5757 0-5477
(b) — — —
4 (a) 0-6622 0-6490 0-6282
b — — —
5 (a) 0-7109 0-7012 0-6856
(b) 0-7050 0-6950 0-6800
6 (a) 0-7474 0-7400 0-7280
(b) 07430 0-7340 0-7230
7 (a) 0-7758 0-7699 0-7605
(b) 0-7730 0-7650 0-7550
8 (a) 0-7984 0-7936 0-7861
(b) 0-7960 0-7890 0-7810
9 (a) 0-8169 0-8129 0-8068
(b) 0-8150 0-8090 0-8020
10 (a) 0-8322 0-8289 0-8238
(b) 0-8310 0-8260 0-8200
generator. The truncation error effects

associated with the numerical solution of the
equations by Willmott’s method are minimized
by repeating all computations with the time
and distance step length’s halved if the calculated
value of |#xee — reg| > 000001 and this
procedure is incorporated automatically in the

Table 3. Value of K/K , employing Willmott's 9] figure

Jor ngee
Reduced Reduced period I1
length A 1 5 3
1 0-9502 0-8287 0-6880
2 09652 0-8742 0-7559
3 09743 0-9044 0-8072
4 09800 0-9247 0-8448
5 0-9838 09386 0-8721
6 0-9865 09485 0-8922
7 0-9885 09558 09072
8 09900 0-9613 09187
9 09912 0-9656 09278
10 09922 09691 0-9350
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Table 3(a)
Reduced Reduced Hausen Reduced Reduced Biot
length  period factor length  time modulus
(2D) (2D)  (phi (3D) (3D) (0]

1-0000 1-0000 09000 12903 13333 09677
2-0000 1-0000 09000 2-5806 1-3333 09677
3-0000 1-0000 09000 3-8710 13333 09677
4-0000 1-0000 09000 51613 13333 09677
5-0000 1:0000 09000 64516 13333 09677
6-0000 1-0000 09000 7-7419 13333 09677
7-0000 1-0000 09000 9-0323 13333 09677
8-0000 1-0000 09000 103226 1-3333 09677
9-0000 10000 09000 11-6129 1-3333 09677

10-0000 1-0000 09000 12-9032 1-3333 09677
1-0000 2:0000 0-9000 1-8182 1-3333 27273
2-0000 2:0000 09000 3-6364 13333 27273
3-0000 2:0000 09000 54545 1-3333 27273
4-0000 2:0000 09000 72727 13333 27273
5-0000 2:0000 09000 90909 13333 27273
6-0000 20000 09000 109091 1-3333 2:7273
7-0000 2:0000 09000 12:7273 13333 27273
8-0000 2-:0000 09000 14-5455 13333 27273
9-0000 2:0000 09000 163636 1-3333 2-7273

10-0000 2:0000 09000 181818 1:3333 2-7273
1-0000 3-0000 0-9000 30769 1-3333 69231
2-0000 3-0000 09000 61538 1-3333 69231
3-0000 3-0000 09000 92308 1-3333 69231
4-0000 3-0000 09000 123077 1-3333 69231

the following way: When Q = Q' = Q", the
value of ¢ is calculated using

¢=1—%Qif Q> 04 (38)

Hence
Q = 2/[15(1 — ¢)], unless Q < 0-4

in which case

Q = 4/[03 — (2:142/¢)*] (39)

I = QN + ¢/3)7 (40)
Hence

N =(Q/ - ¢3! (41)

It should be noticed immediately that it is
possible to calculate, using this formula, in-
finite and negative values of N which are
meaningless.

This points to an important conclusion,
namely that for a given value of ¢, there is an
upper value for IT beyond which it is impossible
to relate the two dimensional problem to any

50000 30000 09000 153846 13333 69231
6:0000 30000 09000 184615 13333 69231
7-0000 30000 09000 21-5385 1-3333 69231
8-0000 30000 09000 246154 13333 69231
9-0000 30000 09000 276923 13333 69231
10-0000 3-0000 09000 307692 1-3333 69231

computer programme. For most computations,
A¢ = A/10 and Ay = I1/20 were used.

A source of inadequacy in the two dimensional
model is the representation of the inversion of
temperature profile within the chequerwall at
the reversals. The smaller the value of the
correction factor ¢, the more severe the effect
of these inversions.

The equations in the three dimensional form
are solved for the values A, Q and N (equal in
both heating and cooling periods) corresponding
to successive values of ¢ = 09, 08, 0-7, 0-6, and
0-5 and the possible values of IT and A chosen
intherange 1 < IT < 3,1 <4 < 10.

The values of Q, A and N are calculated in

Table 3(b)

Reduced Reduced Hausen Reduced Reduced Biot

length  period factor length time modulus
(2D} 2D)  (3D) (N)
10000 1-0000 08000 16667 0-6667  2-5000
2:0000 10000 08000 33333 0-6667  2-5000
3-:0000 10000 08000 50000 06667 2-5000
40000 10000 0-8000 66667 06667  2-5000
50000 1-0000 0-8000 83333 06667 2-5000
60000 10000 08000 100000 0-6667  2-5000
70000 1-0000 0-8000 11-6667 06667 2-5000
80000 1-0000 0-8000 13-3333 06667 2-5000
90000 10000 0-8000 150000 06667  2-5000
100000 10000 0-8000 166667 06667  2-5000
1-:0000 20000 08000 50000 0-6667 15-0000
20000 20000 08000 100000 0-6667 150000
30000 20000 0-8000 150000 0-6667 150000
40000 20000 08000 200000 0-6667 150000
50000 20000 0-8000 250000 06667 150000
6-0000 2:0000 08000 30-0000 0-6667 15-0000
7-0000 2:0000 0-8000 350000 06667 150000
80000 2:0000 0-8000 400000 0-6667 150000
9-:0000 20000 0-8000 450000 0-6667 15-0000
10- 2-:0000 0-8000 500000 06667 150000
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Table 3(c) Table 4. Values of thermal ratio, nggg (for
A =A"andIT ="
Reduced Reduced Hausen Reduced Reduced  Biot (a) Computed using Willmott’s [9] method
length  period factor length time modulus (b)Computed by 3-Dmethod,¢ = 09,2 = 1333

(2D) zD)  (phi) (3D) (3D) (N)

Reduced period IT

10000 10000 07000 2:1053 04444 47368 Reduced

20000 10000 07000 42105 04444 47368 length 4 1 2 3
30000 10000 07000 63158 04444 47368 .
40000 10000 07000 84211 (4444 47368 1 @ 03221 02930 02559
50000 10000 07000 105263 04444 47368 (b) 03193 02849 02437
60000 10000 07000 126316 (4444 47368 2 (a) 04912 04664 04305
70000 10000 07000 147368 04444 47368 (b) 04890 04590 04169
80000 10000 07000 168421 04444 47368 3 (@ 05937 05757 05477
90000 10000 07000 189474 (4444 47368 (b) 05924 05702 05360
100000 10000 07000 210526 04444 47368 4 (a) 06622 06490 06282

(b) 0-6613 0-6453 0-6194
5 (a) 0-7109 0-7012 0-6856
(b) 0-7105 0-6988 0-6794
6 (a) 0-7474 0-7400 0-7280
(b) 0-7473 0-7385 0-7239
7 (a) 0-7758 0-7699 0-7605
(b) 0-7758 0-7691 0-7580

1-0000 10000 06000 2:6472 (-3214 82361
2:0000 10000 06000 52944 03214 82361
3:0000 10000 0-6000 79417 03214 82361
40000 10000 06000 10-5889 (-3214 82361
50000 10000 06000 132361 03214 82361
60000 10000 0-6000 158833 03214 82361
70000 10000 0-6000 185305 03214 82361
8:0000 10000 06000 211777 03214 82361 § (@ 07984 07936 07861

_ ‘ ‘ . ' . (b) 07986 07933 07848
90000 10000 06000 23-8250 03214 82361 9 (2 08169 08129 08068

100000  1-0000 06000 264722 03214 82361 (b) 08172 08130 0-8064
1-0000 10000 0-5000 40354 02216 182125 10 (a) 0-8322 0-8289 0-8238
20000 10000 0-5000 80708 02216 182125 (b) 0-8326 0-8293 0-8241

3-0000 10000 0-5000 12:1062 02216 18-2125
40000 10000 0-5000 16-1417 02216 182125

50000 10000 05000 201771 02216 182125 Table 5. Values of thermal ratio, fgeg (for
60000 10000 0-5000 24-2125 02216 182125 A =A"andIl' =1T")

70000 10000 05000 282479 02216 182125 (a) Computed using Willmott's [9] method
80000 1-0000 0-5000 32-2833 0-2216 182125 (b) Computed by 3-D method ¢ = 0-8,Q2 = 0-666

90000 10000 0-5000 363187 02216 182125
100000 10000 0-5000 403541 02216 18-2125

Reduced period I7

Reduced """ "7 7
length A 1 5

possible corresponding problem in three di- 1 (2 0-3221 02930
mensions. This means, as has been discussed, (b) 0'312; 8’2261
that i.t is unlikely that a regen'erator prob.lem 2 E%; (())232;6 0,4484
suffering from the effects of non-linear behaviour 3 (a) 0-5937 0-5757
(low K/K,, large IT) will be beset simultaneously (b) 0-5887 05553
4 (a) 0-6622 0-6490
by the effects of the regenerator reversals b) 06589 06346
(small ¢). It follows that the effects of ¢ and 5 (a) 0-7109 0-7012
K/K, upon the adequacy of the two dimensional (b) 0-7089 0-6914
. 6 (a) 07474 0-7400
model can, to some extent, be studied separately. (b) 07463 07337
Finally, in order to calculate the reduced 7 (a) 07758 0-7699
length A, the formula below is used. (b) 07752 07655
_ 8 (a) 0-7984 0-7936
A=A+ N¢/3) (42) (b) 0-7982 0-7909
9 (a) 0-8169 0-8129
The possible values of 2, A and N over which (b) 0-8170 0-8126
. b he t d th 10 (a) 0-8322 0-8289
a comparison between the two an ree (b) 08326 0-8298

dimensional models is made, are set out in
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Tables 3(a), (b) and (c) for the ranges 1 < II < 3
(no higher integral values of IT are possible) and
1<A <10

In Tables 4-8 are set out the values of the
thermal ratio #gz; computed by the three

Table 6. Vglues _of thernﬁzl ratio,
Nreg (for A' = A" and II' = 1I")
(a) Computing using Willmott’s [9]

method
(b) Computed by 3-D method ¢ =
07, Q = 0444
Reduced Reduced period IT
length A 1
1 (@ 03221
(b) 0-3027
2 (a) 04912
(b) 0-4749
3 (a) 0-5937
{(b) 0-5822
4 (a) 0-6622
(b) 06543
5 fa) 07109
(b) 0-7056
6 (a) 07474
(b) 07438
7 (9 07758
(b) 0-7734
8 (a) 07984
(b) 0-7969
9 (a) 0-8169
(b) 0-8161
10 (a) 0-8322
(b) 0-8320

dimensional method, together with the corres-
ponding values computed using the two di-
mensional method, for ¢ = 09, 0-8, 0-7, 0-6 and
05. For ¢ = 05, the two sets of values for
Nrec are presented graphically in Fig. 4.

The thermal ratio is a dimensionless form of
the chronological mean exit gas temperature.
If the computed variations with time of this
temperature are compared for the two methods,
then a significant difference is noted—a differ-
ence due to the inadequacy of the ¢ correction
in the two dimensional model. The variations
take the form indicated in Fig. 3.

Tables 9-13 set out the values of (4, — B,)/
(A, — Bj) for all the cases considered and they
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Table 7. Values of thermal ratio,
Nreg (for A' = A" and IT' =1I")
(a) Computed using Willmott’s [9]

method
(b) Computed by 3-D method ¢ =
0-6, 2 = 0252
Reduced Reduced period I
length A 1
1 (a) 0-3221
(b) 0-2895
2 (2 04912
(b) 0-4624
3 (a) 05937
(b) 0-5724
4 (a) 06622
(b) 0-6469
5 () 07110
(b) 07001
6 (a) 0-7475
(b) 0-7396
7 (a) 0-7758
(b) 07702
8 (a) 0-7984
(b) 0-7944
9 (a) 08169
(b) 0-8141
10 (a) 0-8322
(b) 0-8305

are presented in the form of a graph for IT = 1,
in Fig. 5.

In the 3-D computation, Az = 4, and A¢ =
A/10 were used. Ay was chosen so that the
stability factor p was less than 1-5. Reduced
values of An and A¢ were used if |1rec — Nrzc|
at equilibrium was greater than 0-0001.

Conclusions

The use of the correction factor ¢ in the bulk
heat-transfer coefficient, h, is obtained by con-
sidering a mean solid temperature T, (y, 0) and
by specifying that at any height in the re-
generator, the heat transferred per period is
unchanged, that is

P
hj T(x9 y 9) - t(ys 9)d0
0

k=

x=0

F1.0,0) = i, 00d0
0
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Table 8. Values of thermal ratio,

frge (Jor A' =A" and ' =1I")

(a) Computed using Willmott’s [9]
method

(b) Computed using 3-D method
¢=05Q=0174

Reduced period I7

Reduced
length A 1
1 (a) 03221
(b) 0-2725
2 (a) 04911
(b) 0-4465
3 (a) 05937
(b) 0-5606
4 (a) 06622
(b) 0-6390
5 (a) 0-7109
(b) 0-6951
6 (a) 0-7474
(b) 0-7368
7 (a) 0-7758
(b) 0-7688
8 (a) 0-7984
(b) 07941
9 (a) 08169
(b) 0-8147
10 (a) 0-8322
(b) 08316

where
d

T (0, 6) = éj T(x, y, 6) dx.

0

The time integrals are computed on the assump-
tion that 07,,/00 = constant and the ¢ correc-
tion introduced to allow for the inversion of the
parabolic profile at the regenerator reversals.

It might be expected, therefore, that for high
values of K/K,, that is when the effect on non-
linear changes in T,, with respect to time is
smallest, the correlation between the thermal
ratios computed by the 3-D method and those
by the 2-D method is the best. This correlation
deteriorates for decreasing values of K/K. This
is borne out by our computations and upon
examination of Table 3, together with Tables
4-7, it will be observed that the smaller the
value of K/K,, the greater the divergence

A.J. WILLMOTT
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F1G. 5. Relationship between y, the ratio of (max. exit temp.——
min. exit temp.) 2D to the (max. exit temp.—min. exit temp.)
3D and reduced length . IT = 1.

between the ““3-D thermal ratio” and the “2-D
thermal ratio”, see Fig. 4.

Although for high values of K/K, (>09)
the 2-D method can be relied upon to provide
quite ari ‘accurate estimate of time mean exit gas
temperature, because h involves time means, no
accuracy can be placed upon the computed
time variation of exit temperature. When ¢ — 1,
however, 0T, (y, 0)/0f becomes equal to
0T (x, y, 8)/00 for 0 < x < d for the most of each
period, particularly as K/K, — 1.

Table 9. Values of ratio:
(Max. exit gas temp — min exit gas temp) 2D

(Max. exit gas temp — min exit gas temp) 3D
Computed by 3-D method ¢ = 09,2 = 1-333

Reduced period IT

Reduced
length A4 1 5 3
1 0-6484 0-6179 05847
2 06726 0-6881 0-7225
3 0-6860 0-7192 0-7687
4 0-6926 0-7313 07820
5 0-6956 07360 0-7858
6 0-6970 0-7382 07877
7 06977 07397 0-7897
8 0-6983 0-7409 07919
9 0-6987 07421 0-7944
10 0-6990 07432 07970
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Table 10. Values of ratio:
(Max. exit gas temp — min. exit gas temp) 2D
(Max. exit gas temp — min. exit gas temp) 3D
Computed by 3-D method ¢ = 0-8, Q = 0-666

Reduced Reduced period IT
length A 1 2

1 04671 0-4502

2 0-5085 05667

3 0-5288 0-5987

4 05375 0-6073

5 0-5413 0-6105

6 0-5432 06133

7 0-5444 0-6162

8 0-5454 06190

9 0-5462 0-6235

10 0-5469 06273

At the reversals this is not true, and as ¢ de-
creases, the greater is the effect of these reversals.
Tables 9-12 reveal significantly decreasing value
of (A, — B,)/(A; — Bj) the smaller the value of
¢. As K/K decreases, (4, — B,)/(45 — Bj)also
becomes smaller but the effect of K/K, is not
as significant as the effect of the factor ¢. As
K/K,— 1 as reduced length A increases, the
value of (4, — B,){(A; — B;) or ¢ becomes
asymptotic, as shown in Fig. 5.

The three dimensional method of solving the

Table 11. Value of ratio:
(Max. exit gas temp — min. exit gas temp) 2D

(Max. exit gas temp — min. exit gas temp) 3D

Computed by 3-D method ¢ = 6~7,
Q=044

Reduced Reduced period IT
length A {

0-3726
0-4217
0-4423
0-4501
0-4534
0-4554
0-4569
0-4583
0-4594

0-4606

OO0 AW =

o
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Table 12. Value of ratio:
(Max. exit gas temp — min. exit gas temp) 2D
(Max. exit gas temp — min. exit gas temp) 3D

Computed by 3-D method, ¢ = 0-6,
Q = 0252

Reduced Reduced period IT

length A |

0-3157
0-3676
0-3853
0-3909
0-3934
0-3953
0-3971
0-3989
0-4006
0-4021

[e=RRN ~J- BN o Y el A

—

regenerator equations involves the heavy ex-
penditure of computer time and on small com-
puters, the method is impracticable. Further it is
possible in practice to develop methods of
solving the 2-D equations for non-linear prob-
lems such as those involving temperature
dependent specific heat and time varying flow
rate. Although such developments of the 3-D
model are possible in theory, the amount of
computer time involved, even on a very fast
computer, appears prohibitive.

Table 13. Value of ratio:
(Max. exit gas temp — min. exit gas temp) 2D
(Max. exit gas temp — min. exit gas temp) 3D

Computed by 3-D method, ¢ = 0-5,
Q=0174

Reduced Reduced period IT
length A 1

0-2665
0-3206
0-3337
0-3368
0-3387
0-3409
0-3436
0-3463
0-3492
0-3518

OO0~ W kW

—_
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Although consideration here is limited to the
plain slab problem, the principles by which the
reliability of a 2-D model to represent more
complex geometries can be tested are set out.
Use of the factors ¢ and K/K,, will be equally
applicable. Hausen [1] has developed formulae
for ¢ for other geometric shapes.

In using 2-D methods of solving the regenera-
tor equations, caution should be used in
interpreting the computations of K/K, < 0-9
and no reliance should be placed upon the
calculated time variations of temperature for
values of ¢ < 0-9. For Cowper stoves, typical
figures are

a = 002 ft2/h,
P, =2hr, P, =1hr,

d = 0052 ft
¢ = 097

indicating caution need only be applied when
K/K, becomes small (this can vary from 0-7 to
095 for Cowper stoves) or if very short cycles
are considered which reduces the value of ¢.
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APPENDIX

An Estimate of the Longitudinal Conductivity

in the Heat Storing Mass
The temperature gradient down the re-

generator in, for example, the heating period is
approximately (thi — thm)/L.

The volume of the chequerwork is Ad

1013

Therefore the cross sectional area of chequer-
mass is Ad/L

Therefore the rate of longitudinal heat con-
duction in the chequerwork is approximately

AdA(thi — thm)/2 Btu/h (cal/s).

Rate of heat input to regenerator by the gas

in the heating period is

WS (thi — thm) Btu/h (cal/s)

The ratio y
_ longitudinal heat conduction _ AdA
- heat input by gas ~ Bws
For a Cowper Stove, typical figures are:
A= 200,000 ft*
d =005ft
A = 07 Btu/ft h/°F
L=280ft
W= 200,000 1b/h
S = 025 Btu/lb °F
Therefore
y=22x10"°

The figure for thermal conductivity 4 refers

to a ceramic material.

This implies that longitudinal conduction can

be neglected and indeed most authors always
assume that a term in the differential equations
which accounts for this can be ignored. Tipler
[16] mentions a value of 10~2 for y in the case
of regenerators used in Gas Turbines and con-
sidered that longitudinal conduction could be
neglected.

Résumé—La représentation adéquate du comportement thermique de 1’échangeur de chaleur par récupéra-
tion a attiré I’attention des mathématiciens depuis de nombreuses années. Presque tous les efforts ont
été dirigés vers les problémes bidimensionnels, dont on a eu besoin pour calculer les températures dans
le récupérateur en fonction de la distance, dans la direction de ’écoulement gazeux, et du temps. L’effet
de la conductivité thermique a I’intérieur du matériau d’accumulation de la chaleur du récupérateur dans
une direction perpendiculaire 3 la direction de I’écoulement gazeux a été, soit ignoré, soit incorporé avec
un coefficient de transport de chaleur discret ou global. Dans cet article, les équations tridimensionnelles
sont prises en considération et I’on discute effet de I'hypothése simplificatrice selon laquelle le probléme
peut étre considéré comme ayant seulement deux dimensions. Le probiéme de la conductivité thermique
longitudinale n’est pas examiné, puisqu’on a montré que son effet dans la plupart des cas pratiques est
négligeable.
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Zusammenfassung—Die addquate Beschreibung des thermischen Ubertragungsverhaltens von regenerativ-
en Wirmeaustauschern hat schon seit vielen Jahren bei Mathematikern Interesse gefunden. Fast alle
Bemiihungen haben sich auf das zweidimensionale Problem konzentriert, d.h man hat sich die Aufgabe
gestellt, die Temperaturen im Regenerator als Funktion der Entfernung, gemessen in Stromungsrichtung,
sowie der Zeit zu berechnen. Der Einfluss der Wirmeleitfahigkeit in der Speichermasse des Regenerators
quer zur Strdmungsrichtung ist entweder vernachléssigt, oder in Form eines bestimmten Zusatzwider-
standes dem Wirmeiibergangswiderstand zugeschlagen worden. In dieser Arbeit werden die dreidimen-
sionalen Gleichungen zugrunde gelegt und es wird diskutiert, inwieweit sich die Annahme, das Problem
kdnne rein zweidimensional behandelt werden, auswirkt. Das Problem der Libngwirmeleitung wird
nicht weiter untersucht, da gezeigt worden ist, dass dieser Effekt in den meisten praktischen Fillen ver-
nachlassigbar bleibt.

AHHOTAIHA—33/a4a YAOBJIETBOPUTEILHOIO ONMCAHMA PAlOTHl pPEreHEePATUBHOTO TENo-
o0MEeHHMKA MHOTHe POJH IIPHUBIEKAJa BHUMAHUE MaTeMaTHKOB. [1OYTH BCe MOMBITHM GBLIM
HampaBJIeHH HA pellleHMe ABYMEPHHIX 3aJad, T.e. TpeGOBATOCH PACCYMTATH TEMIEPATYPH B
pereHepaTope Kak QYHKIUIO PACCTOAHMA B HANPABJIEHHH TeYEHHUA rasa i BpeMeHu. Buusuune
TETIONPOBOJHOCTU B MaTepHalle, AKKYMyJIMPYIOIIeM TelI0, B HalpPaBJIeHU! NePIeHIUKYIAp-
HOM HAMpPAaBJIEHMIO NMOTOKA rasa, aubo npenebperanocs, MO0 YYUTHBAIOCH 0OmNM Kod(HPuU-
IMeHTOM TemaooGMena. B JaHHO!t craThe paccMATPUBAIOTCA TpeXMepHBIE YPaBHEHHA W
ofcy:kpmaercs ynpolaiollee NPeANoJIOKeHHe O TOM, YTO 3aXaYy MOMKHO pACCMATPHMBATL Kak
aBymepuylo. IIpogolpHas TenJompOBOAHOCTL He PACCMATPHUBAETCA, T.K. NMOKA33aHO, 4TO €6
BIMAHUEM B GOJIBLIMHCTBE NPAKTHNYECKH BAMHBIX CJIYU4€B MOMHO NpeHefpeys.



